本文目录一览:

五年级奥数流水行船问题试题【三篇】

解答:由题意可知,船在顺水中的速度是300÷5=60千米/小时,在逆水中的速度是300÷6=50千米/小时,所以静水速度是(60+50)÷2=55千米/小时,水流速度是(60-50)÷2=5千米/小时。

流水行船问题(流水行船问题12个公式)流水行船问题(流水行船问题12个公式)


【二】

1.大沙河上、下游相距120千米,每天定时有甲、乙两艘船速相同的客轮从上、下游同时出发,面对面行驶.定这两艘客轮的船速都是每小时25千米,水速是每小时5千米,则两艘客轮在出发后几小时相遇?

解答:解:120÷(25-5+25+5),

=120÷50,

=2.4(小时).

答:两艘客轮在出发后2.4小时相遇.

【三】

在流水中的相遇和追及,水速不影响相遇和追及时间

例5A、B两码头间河流长90千米,甲乙两船分别从A、B码头,同时启航,如果相向而行,3小时相遇,如果同向而行,9小时,甲追上乙,求两船在静水中的速度?

分析

V甲顺=V甲船+V水

V乙顺=V乙船+V水

V乙逆=V乙船-V水

相遇

速度和=V甲顺+V乙逆

=V甲船+V水+V乙船-V水

=V甲船+V乙船

速度和=路程和÷相遇时间

=90÷3

=30(Km/h)

追及

速度=V甲顺-V乙顺

=V甲船+V水-(V乙船+V水)

=V甲船+V水-V乙船-V水

=V甲船-V乙船

速度=路程÷追及时间

=90÷9

=10(Km/h)

V甲船+V乙船=30

V甲船-V乙船=10

得到

V甲船=20(Km/h)

V乙船=10(Km/h)

答:甲船的速度为20千米每小时,乙船的速度为10千米每小时。

【 #小学奥数# 导语】天高鸟飞,海阔鱼跃,学习这舞台,秀出你独特的精彩用好分秒时间,积累点滴知识,解决疑难问题,学会举一反三。以下是 为大家整理的《五年级奥数流水行船问题试题及【三篇】》 供您查阅。

【篇】

1、一只船从甲港开往相距713千米的乙港,去时顺水23小时到达,返回时逆水则需要31个小时到达,请问船在静水中的速度和水流的速度各是多少?

2、一条河上有甲、乙两个码头,甲在乙的上游50千米处。客船和货船分别从甲、乙两码头同时出发向上驶,两船的静水速度相同且始终保持不变,客船 出发时有一物品从船上落入水中,10分钟后此物品距客船5千米,客船在行驶20千米后折向下游追赶此物,追上时恰好和货船相遇,求水流的速度。

1、解:(713÷23+713÷31)÷2=27(千米/时)

31-27=4(千米/时)

所以船在静水中的速度为每小时27千米,水流速度为每小时4千米。

2、分析:船在静水中的速度为每分钟5÷10=0.5(千米)。客船、货船与物品从出发到共同相遇所需的时间为50÷0.5=100(分钟)。客船掉头时,它与货船相距50千米。随后两船作相向运动,速度之和为船速的2倍,因此从调头到相遇所用的时间为50÷(0.5+0.5)=50(分钟)。于是客船逆水行驶20千米所用的时间为100-50=50分钟,从而船的逆水速度是每分钟20÷50=0.4(千米),水流速度为每分钟0.5-0.4=0.1(千米)

【第二篇】

已知一艘轮船顺水行48千米需4小时,逆水行48千米需6小时.现在轮船从上游A港到下游B港.已知两港间的水路长为72千米,开船时一旅客从窗口扔到水里一块木板,问船到B港时,木块离B港还有多远?

分析:顺水行速度为:48÷4=12(千米),逆水行速度为:48÷6=8(千米).

因为顺水速度是比船的速度多了水的速度,而逆水速度是船的速度再减去水的速度,因此顺水速度和逆水速度之间相的是“两个水的速度”,因此可求出水的速度为:(12-8)÷2=2(千米).

现条件为到下游,因此是顺水行驶,从A到B所用时间为:72÷12=6(小时).

木板从开始到结束所用时间与船相同,木板随水而飘,所以行驶的速度就是水的速度,可求出6小时木板的路程为:

6×2=12(千米);与船所到达的B地距离还:72-12=60(千米).

解:顺水行速度为:48÷4=12(千米),

逆水行速度为:48÷6=8(千米),

水的速度为:(12-8)÷2=2(千米),

从A到B所用时间为:72÷12=6(小时),

6小时木板的路程为:6×2=12(千米),

与船所到达的B地距离还:72-12=60(千米).

答:船到B港时,木块离B港还有60米.

点评:此题运用了关系式:(顺水速度-逆水速度)÷2=水速.

【第三篇】

例1:一艘船,在一条水流速度为每小时3千米的河水中航行,船逆水航行12小时,共行300千米,问这条船在静水中的速度是每小时行多少千米?

1、一艘船在静水中每小时行25千米,顺水航行3小时共行90千米,求水流速度?

2、一艘客船每小时行驶27千米,在大河中顺水航行160千米,每小时水速是5千米,需要航行多少小时?

3、一艘军舰的静水速度为每小时行54千米,海水的速度是每小时行16千米,逆水航行798千米,需要用多少小时?

例2:甲、乙两港间的水路长416千米,一只船从甲港开往乙港,顺水16小时到达,逆水返回时26小时到达,求船在静水中速度和水流速度?

1、船在河中航行,顺水每小时28千米,逆水每小时行22千米,求船速和水速?

2、甲、乙两地相距280千米,一艘客轮在两港间航行,顺流用去7小时,逆流用去10小时,则轮船的船速和水速各是多少?

例3:甲、乙两船的静水速度是每小时24千米和每小时20千米,两船先后从某港口顺水开出,乙比甲早出发3小时,若水速是每小时4千米,问甲开出后几小时可追上乙?

1、甲、乙两船在静水中的速度分别为每小时24千米和18千米,两船先后自同一港中逆水而上,乙船比甲船早出发2小时,若水速是每小时3千米,问甲船开出几小时可追上乙船?

2、两码头相距231千米,轮船顺水行驶这段路程需要11小时,逆水比顺水每小时少行10千米,问行驶这段路程逆水比顺水需要多用几小时?

例4:一只小船在一条180千米长的河上航行,它顺水航行需用6小时,逆水航行需用9小时,如果有一只木箱只靠水的流动而漂移,若走完同样长距离需要几小时?

1、一只汽船在一条可上航行从A地到B地,如果它顺水航行需用3小时,返回逆水航行需要4小时,请问:如果一只木桶仅靠水的流动而漂移,走完同样长的距离需要多少小时?

2、甲、乙两地相距96千米,一船顺流由甲地去乙地需3小时,返回时因雨后涨水,所以用了8小时才回到甲地,平时水速为每小时8千米,求涨水后水速增加了多少千米?

例5:一只小船次顺水航行56千米,逆水航行20千米,共用12小时,第二次用同样的时间顺流航行40千米,逆流航行28千米,求这只小船的静水速度和水流速度?

1、一只小船顺水航行30千米再逆水航行6千米,共用8小时,如果在同一条河流中这条小船顺流航行18千米再逆流航行10千米也用8小时,求这只小船的静水速度和水流速度?

2、一只小船顺水航行36千米,逆水航行24千米,共用7小时,用同样的时间顺流航行48千米,逆流航行18千米。求这只小船顺水航行72千米再逆水航行24千米需要几小时?

小学五年级奥数流水行船问题

解答:由题意可知,船在顺水中的速度是300÷5=60千米/小时,在逆水中的速度是300÷6=50千米/小时,所以静水速度是(60+50)÷2=55千米/小时,水流速度是(60-50)÷2=5千米/小时。

【二】

1.大沙河上、下游相距120千米,每天定时有甲、乙两艘船速相同的客轮从上、下游同时出发,面对面行驶.定这两艘客轮的船速都是每小时25千米,水速是每小时5千米,则两艘客轮在出发后几小时相遇?

解答:解:120÷(25-5+25+5),

=120÷50,

=2.4(小时).

答:两艘客轮在出发后2.4小时相遇.

【三】

在流水中的相遇和追及,水速不影响相遇和追及时间

例5A、B两码头间河流长90千米,甲乙两船分别从A、B码头,同时启航,如果相向而行,3小时相遇,如果同向而行,9小时,甲追上乙,求两船在静水中的速度?

分析

V甲顺=V甲船+V水

V乙顺=V乙船+V水

V乙逆=V乙船-V水

相遇

速度和=V甲顺+V乙逆

=V甲船+V水+V乙船-V水

=V甲船+V乙船

速度和=路程和÷相遇时间

=90÷3

=30(Km/h)

追及

速度=V甲顺-V乙顺

=V甲船+V水-(V乙船+V水)

=V甲船+V水-V乙船-V水

=V甲船-V乙船

速度=路程÷追及时间

=90÷9

=10(Km/h)

V甲船+V乙船=30

V甲船-V乙船=10

得到

V甲船=20(Km/h)

V乙船=10(Km/h)

答:甲船的速度为20千米每小时,乙船的速度为10千米每小时。

【 #小学奥数# 导语】天高鸟飞,海阔鱼跃,学习这舞台,秀出你独特的精彩用好分秒时间,积累点滴知识,解决疑难问题,学会举一反三。以下是 为大家整理的《五年级奥数流水行船问题试题及【三篇】》 供您查阅。

【篇】

1、一只船从甲港开往相距713千米的乙港,去时顺水23小时到达,返回时逆水则需要31个小时到达,请问船在静水中的速度和水流的速度各是多少?

2、一条河上有甲、乙两个码头,甲在乙的上游50千米处。客船和货船分别从甲、乙两码头同时出发向上驶,两船的静水速度相同且始终保持不变,客船 出发时有一物品从船上落入水中,10分钟后此物品距客船5千米,客船在行驶20千米后折向下游追赶此物,追上时恰好和货船相遇,求水流的速度。

1、解:(713÷23+713÷31)÷2=27(千米/时)

31-27=4(千米/时)

所以船在静水中的速度为每小时27千米,水流速度为每小时4千米。

2、分析:船在静水中的速度为每分钟5÷10=0.5(千米)。客船、货船与物品从出发到共同相遇所需的时间为50÷0.5=100(分钟)。客船掉头时,它与货船相距50千米。随后两船作相向运动,速度之和为船速的2倍,因此从调头到相遇所用的时间为50÷(0.5+0.5)=50(分钟)。于是客船逆水行驶20千米所用的时间为100-50=50分钟,从而船的逆水速度是每分钟20÷50=0.4(千米),水流速度为每分钟0.5-0.4=0.1(千米)

【第二篇】

已知一艘轮船顺水行48千米需4小时,逆水行48千米需6小时.现在轮船从上游A港到下游B港.已知两港间的水路长为72千米,开船时一旅客从窗口扔到水里一块木板,问船到B港时,木块离B港还有多远?

分析:顺水行速度为:48÷4=12(千米),逆水行速度为:48÷6=8(千米).

因为顺水速度是比船的速度多了水的速度,而逆水速度是船的速度再减去水的速度,因此顺水速度和逆水速度之间相的是“两个水的速度”,因此可求出水的速度为:(12-8)÷2=2(千米).

现条件为到下游,因此是顺水行驶,从A到B所用时间为:72÷12=6(小时).

木板从开始到结束所用时间与船相同,木板随水而飘,所以行驶的速度就是水的速度,可求出6小时木板的路程为:

6×2=12(千米);与船所到达的B地距离还:72-12=60(千米).

解:顺水行速度为:48÷4=12(千米),

逆水行速度为:48÷6=8(千米),

水的速度为:(12-8)÷2=2(千米),

从A到B所用时间为:72÷12=6(小时),

6小时木板的路程为:6×2=12(千米),

与船所到达的B地距离还:72-12=60(千米).

答:船到B港时,木块离B港还有60米.

点评:此题运用了关系式:(顺水速度-逆水速度)÷2=水速.

【第三篇】

例1:一艘船,在一条水流速度为每小时3千米的河水中航行,船逆水航行12小时,共行300千米,问这条船在静水中的速度是每小时行多少千米?

1、一艘船在静水中每小时行25千米,顺水航行3小时共行90千米,求水流速度?

2、一艘客船每小时行驶27千米,在大河中顺水航行160千米,每小时水速是5千米,需要航行多少小时?

3、一艘军舰的静水速度为每小时行54千米,海水的速度是每小时行16千米,逆水航行798千米,需要用多少小时?

例2:甲、乙两港间的水路长416千米,一只船从甲港开往乙港,顺水16小时到达,逆水返回时26小时到达,求船在静水中速度和水流速度?

1、船在河中航行,顺水每小时28千米,逆水每小时行22千米,求船速和水速?

2、甲、乙两地相距280千米,一艘客轮在两港间航行,顺流用去7小时,逆流用去10小时,则轮船的船速和水速各是多少?

例3:甲、乙两船的静水速度是每小时24千米和每小时20千米,两船先后从某港口顺水开出,乙比甲早出发3小时,若水速是每小时4千米,问甲开出后几小时可追上乙?

1、甲、乙两船在静水中的速度分别为每小时24千米和18千米,两船先后自同一港中逆水而上,乙船比甲船早出发2小时,若水速是每小时3千米,问甲船开出几小时可追上乙船?

2、两码头相距231千米,轮船顺水行驶这段路程需要11小时,逆水比顺水每小时少行10千米,问行驶这段路程逆水比顺水需要多用几小时?

例4:一只小船在一条180千米长的河上航行,它顺水航行需用6小时,逆水航行需用9小时,如果有一只木箱只靠水的流动而漂移,若走完同样长距离需要几小时?

1、一只汽船在一条可上航行从A地到B地,如果它顺水航行需用3小时,返回逆水航行需要4小时,请问:如果一只木桶仅靠水的流动而漂移,走完同样长的距离需要多少小时?

2、甲、乙两地相距96千米,一船顺流由甲地去乙地需3小时,返回时因雨后涨水,所以用了8小时才回到甲地,平时水速为每小时8千米,求涨水后水速增加了多少千米?

例5:一只小船次顺水航行56千米,逆水航行20千米,共用12小时,第二次用同样的时间顺流航行40千米,逆流航行28千米,求这只小船的静水速度和水流速度?

1、一只小船顺水航行30千米再逆水航行6千米,共用8小时,如果在同一条河流中这条小船顺流航行18千米再逆流航行10千米也用8小时,求这只小船的静水速度和水流速度?

2、一只小船顺水航行36千米,逆水航行24千米,共用7小时,用同样的时间顺流航行48千米,逆流航行18千米。求这只小船顺水航行72千米再逆水航行24千米需要几小时?

【 #小学奥数# 导语】解奥数题时,如果能合理的、科学的、巧妙的借助点、线、面、图、表将奥数问题直观形象的展示出来,将抽象的数量关系形象化,可使同学们容易搞清数量关系,沟通“已知”与“未知”的联系,抓住问题的本质,迅速解题。以下是 无 整理的《小学五年级奥数流水行船问题》相关资料,希望帮助到您。

1.小学五年级奥数流水行船问题

公式定律:

顺水速度=船速+水速

逆水速度=船速-水速

船速=(顺水速度+逆水速度)÷2

水速=(顺水速度-逆水速度)÷2

公式说明:

(1)船在水中航行,比一般的行程问题又有了一个水流的影响,研究路程、速度与时间之间的数量关系称为流水行船问题。

(2)船顺水航行时,一方面按照船本身的速度即船速(船在静水中的速度)在水面行驶,同时水面又有水流动的速度在前行,水也带着船行进,因此顺水速度是船速与水速的和,即顺水速度=船速+水速。船逆水航行时,水流方向与船航行的方向相反,所以逆水速度是船速与水速的,即逆水速度=船速-水速。顺水速度与逆水速度相2个水速,所以水速=(顺水速度-逆水速度)÷2,船速二(顺水速度+逆水速度)÷2。

流水行船应用题:

[例1]一条船在河中行驶,顺水每小时行16千米,逆水每小时行10千米,求船在静水中的速度和水流速度各是多少千米。

分析:船顺水速度是每小时16千米,是船速与水速的和,逆水速度是每小时10千米,是船速与水速的。16+10=26(千米/时)正好是2个船速,由此可以求出船速是26÷2=13(千米/时)。再求出顺水速度减去船速16-13=3(千米/时),就是水速,或者(顺水速度-逆水速度)÷2,即(16-10)+2=3(千米/时)。

解船速:(16+10)÷2=13(千米/时)

水速:16-13=3(千米/时)

或(16-10)÷2=3(千米/时)

答:船在静水中的速度是每小时13千米,水速是每小时3千米。

[例2]一艘船在静水中的速度是每小时32千米,A、B两港口相距192千米,这艘船从A港口逆流而行12小时到达B港口,从B港口顺流返回A港口需多少小时?

分析:船从A港口逆流而行12小时到达相距192。米的B港口,可以求出逆水速度是192÷12=16(千米/时),根据船速是32千米/时,可求出水速是32-16=16(千米/时),进而知道顺水速度为32+16=48(千米/时)。根据行程问题中路程与速度的关系,可以求出由B港口顺流返回A港口的时间是192÷48=4(小时)。

解水速:32-192÷12=16(千米/时)

返回时间:192÷(32+16)=4(小时)

答:从B港口顺流返回A港口需4小时。

提醒:流水行船问题和行程问题的分析方法是一致的,只是要考虑顺流或逆流对船速的影响。

[例3]一条船在静水中的速度是每小时14千米,顺水航行12小时的路程,逆水要航行16小时,求水流速度是每小时多少千米。

分析:根据顺水的路程与逆水的路程相等,可以列方程解答,也可以用比例来解答。

解方法一:设水流速度为每小时x千米。

(14+x)×12=(14-x)×16

x=2

方法二:设水流速度为每小时x千米。

(14+x):(14-x)=16:12

x=2

答:水流速度是每小时2千米。

注意:顺流航行和逆流航行的路程是一样的,顺流速度快,时间就短,反之逆流速度慢,时间就长。

2.小学五年级奥数流水行船问题

1、一只小船在一条180千米长的河上航行,它顺水航行需用6小时,逆水航行需用9小时,如果有一只木箱只靠水的流动而漂移,若走完同样长距离需要几小时?

2、一只汽船在一条可上航行从A地到B地,如果它顺水航行需用3小时,返回逆水航行需要4小时,请问:如果一只木桶仅靠水的流动而漂移,走完同样长的距离需要多少小时?

3、甲、乙两地相距96千米,一船顺流由甲地去乙地需3小时,返回时因雨后涨水,所以用了8小时才回到甲地,平时水速为每小时8千米,求涨水后水速增加了多少千米?

4一只小船次顺水航行56千米,逆水航行20千米,共用12小时,第二次用同样的时间顺流航行40千米,逆流航行28千米,求这只小船的静水速度和水流速度?

5、一只小船顺水航行30千米再逆水航行6千米,共用8小时,如果在同一条河流中这条小船顺流航行18千米再逆流航行10千米也用8小时,求这只小船的静水速度和水流速度?

3.小学五年级奥数流水行船问题

1、一艘船在静水中每小时行25千米,顺水航行3小时共行90千米,求水流速度?

2、一艘客船每小时行驶27千米,在大河中顺水航行160千米,每小时水速是5千米,需要航行多少小时?

3、一艘军舰的静水速度为每小时行54千米,海水的速度是每小时行16千米,逆水航行798千米,需要用多少小时?

4、一艘船,在一条水流速度为每小时3千米的河水中航行,船逆水航行12小时,共行300千米,问这条船在静水中的速度是每小时行多少千米?

5、甲、乙两港间的水路长416千米,一只船从甲港开往乙港,顺水16小时到达,逆水返回时26小时到达,求船在静水中速度和水流速度?

6、船在河中航行,顺水每小时28千米,逆水每小时行22千米,求船速和水速?

7、甲、乙两地相距280千米,一艘客轮在两港间航行,顺流用去7小时,逆流用去10小时,则轮船的船速和水速各是多少?

8、甲、乙两船的静水速度是每小时24千米和每小时20千米,两船先后从某港口顺水开出,乙比甲早出发3小时,若水速是每小时4千米,问甲开出后几小时可追上乙?

9、甲、乙两船在静水中的速度分别为每小时24千米和18千米,两船先后自同一港中逆水而上,乙船比甲船早出发2小时,若水速是每小时3千米,问甲船开出几小时可追上乙船?

10、两码头相距231千米,轮船顺水行驶这段路程需要11小时,逆水比顺水每小时少行10千米,问行驶这段路程逆水比顺水需要多用几小时?

行测技巧:如何解流水行船问题

解答:由题意可知,船在顺水中的速度是300÷5=60千米/小时,在逆水中的速度是300÷6=50千米/小时,所以静水速度是(60+50)÷2=55千米/小时,水流速度是(60-50)÷2=5千米/小时。

【二】

1.大沙河上、下游相距120千米,每天定时有甲、乙两艘船速相同的客轮从上、下游同时出发,面对面行驶.定这两艘客轮的船速都是每小时25千米,水速是每小时5千米,则两艘客轮在出发后几小时相遇?

解答:解:120÷(25-5+25+5),

=120÷50,

=2.4(小时).

答:两艘客轮在出发后2.4小时相遇.

【三】

在流水中的相遇和追及,水速不影响相遇和追及时间

例5A、B两码头间河流长90千米,甲乙两船分别从A、B码头,同时启航,如果相向而行,3小时相遇,如果同向而行,9小时,甲追上乙,求两船在静水中的速度?

分析

V甲顺=V甲船+V水

V乙顺=V乙船+V水

V乙逆=V乙船-V水

相遇

速度和=V甲顺+V乙逆

=V甲船+V水+V乙船-V水

=V甲船+V乙船

速度和=路程和÷相遇时间

=90÷3

=30(Km/h)

追及

速度=V甲顺-V乙顺

=V甲船+V水-(V乙船+V水)

=V甲船+V水-V乙船-V水

=V甲船-V乙船

速度=路程÷追及时间

=90÷9

=10(Km/h)

V甲船+V乙船=30

V甲船-V乙船=10

得到

V甲船=20(Km/h)

V乙船=10(Km/h)

答:甲船的速度为20千米每小时,乙船的速度为10千米每小时。

【 #小学奥数# 导语】天高鸟飞,海阔鱼跃,学习这舞台,秀出你独特的精彩用好分秒时间,积累点滴知识,解决疑难问题,学会举一反三。以下是 为大家整理的《五年级奥数流水行船问题试题及【三篇】》 供您查阅。

【篇】

1、一只船从甲港开往相距713千米的乙港,去时顺水23小时到达,返回时逆水则需要31个小时到达,请问船在静水中的速度和水流的速度各是多少?

2、一条河上有甲、乙两个码头,甲在乙的上游50千米处。客船和货船分别从甲、乙两码头同时出发向上驶,两船的静水速度相同且始终保持不变,客船 出发时有一物品从船上落入水中,10分钟后此物品距客船5千米,客船在行驶20千米后折向下游追赶此物,追上时恰好和货船相遇,求水流的速度。

1、解:(713÷23+713÷31)÷2=27(千米/时)

31-27=4(千米/时)

所以船在静水中的速度为每小时27千米,水流速度为每小时4千米。

2、分析:船在静水中的速度为每分钟5÷10=0.5(千米)。客船、货船与物品从出发到共同相遇所需的时间为50÷0.5=100(分钟)。客船掉头时,它与货船相距50千米。随后两船作相向运动,速度之和为船速的2倍,因此从调头到相遇所用的时间为50÷(0.5+0.5)=50(分钟)。于是客船逆水行驶20千米所用的时间为100-50=50分钟,从而船的逆水速度是每分钟20÷50=0.4(千米),水流速度为每分钟0.5-0.4=0.1(千米)

【第二篇】

已知一艘轮船顺水行48千米需4小时,逆水行48千米需6小时.现在轮船从上游A港到下游B港.已知两港间的水路长为72千米,开船时一旅客从窗口扔到水里一块木板,问船到B港时,木块离B港还有多远?

分析:顺水行速度为:48÷4=12(千米),逆水行速度为:48÷6=8(千米).

因为顺水速度是比船的速度多了水的速度,而逆水速度是船的速度再减去水的速度,因此顺水速度和逆水速度之间相的是“两个水的速度”,因此可求出水的速度为:(12-8)÷2=2(千米).

现条件为到下游,因此是顺水行驶,从A到B所用时间为:72÷12=6(小时).

木板从开始到结束所用时间与船相同,木板随水而飘,所以行驶的速度就是水的速度,可求出6小时木板的路程为:

6×2=12(千米);与船所到达的B地距离还:72-12=60(千米).

解:顺水行速度为:48÷4=12(千米),

逆水行速度为:48÷6=8(千米),

水的速度为:(12-8)÷2=2(千米),

从A到B所用时间为:72÷12=6(小时),

6小时木板的路程为:6×2=12(千米),

与船所到达的B地距离还:72-12=60(千米).

答:船到B港时,木块离B港还有60米.

点评:此题运用了关系式:(顺水速度-逆水速度)÷2=水速.

【第三篇】

例1:一艘船,在一条水流速度为每小时3千米的河水中航行,船逆水航行12小时,共行300千米,问这条船在静水中的速度是每小时行多少千米?

1、一艘船在静水中每小时行25千米,顺水航行3小时共行90千米,求水流速度?

2、一艘客船每小时行驶27千米,在大河中顺水航行160千米,每小时水速是5千米,需要航行多少小时?

3、一艘军舰的静水速度为每小时行54千米,海水的速度是每小时行16千米,逆水航行798千米,需要用多少小时?

例2:甲、乙两港间的水路长416千米,一只船从甲港开往乙港,顺水16小时到达,逆水返回时26小时到达,求船在静水中速度和水流速度?

1、船在河中航行,顺水每小时28千米,逆水每小时行22千米,求船速和水速?

2、甲、乙两地相距280千米,一艘客轮在两港间航行,顺流用去7小时,逆流用去10小时,则轮船的船速和水速各是多少?

例3:甲、乙两船的静水速度是每小时24千米和每小时20千米,两船先后从某港口顺水开出,乙比甲早出发3小时,若水速是每小时4千米,问甲开出后几小时可追上乙?

1、甲、乙两船在静水中的速度分别为每小时24千米和18千米,两船先后自同一港中逆水而上,乙船比甲船早出发2小时,若水速是每小时3千米,问甲船开出几小时可追上乙船?

2、两码头相距231千米,轮船顺水行驶这段路程需要11小时,逆水比顺水每小时少行10千米,问行驶这段路程逆水比顺水需要多用几小时?

例4:一只小船在一条180千米长的河上航行,它顺水航行需用6小时,逆水航行需用9小时,如果有一只木箱只靠水的流动而漂移,若走完同样长距离需要几小时?

1、一只汽船在一条可上航行从A地到B地,如果它顺水航行需用3小时,返回逆水航行需要4小时,请问:如果一只木桶仅靠水的流动而漂移,走完同样长的距离需要多少小时?

2、甲、乙两地相距96千米,一船顺流由甲地去乙地需3小时,返回时因雨后涨水,所以用了8小时才回到甲地,平时水速为每小时8千米,求涨水后水速增加了多少千米?

例5:一只小船次顺水航行56千米,逆水航行20千米,共用12小时,第二次用同样的时间顺流航行40千米,逆流航行28千米,求这只小船的静水速度和水流速度?

1、一只小船顺水航行30千米再逆水航行6千米,共用8小时,如果在同一条河流中这条小船顺流航行18千米再逆流航行10千米也用8小时,求这只小船的静水速度和水流速度?

2、一只小船顺水航行36千米,逆水航行24千米,共用7小时,用同样的时间顺流航行48千米,逆流航行18千米。求这只小船顺水航行72千米再逆水航行24千米需要几小时?

【 #小学奥数# 导语】解奥数题时,如果能合理的、科学的、巧妙的借助点、线、面、图、表将奥数问题直观形象的展示出来,将抽象的数量关系形象化,可使同学们容易搞清数量关系,沟通“已知”与“未知”的联系,抓住问题的本质,迅速解题。以下是 无 整理的《小学五年级奥数流水行船问题》相关资料,希望帮助到您。

1.小学五年级奥数流水行船问题

公式定律:

顺水速度=船速+水速

逆水速度=船速-水速

船速=(顺水速度+逆水速度)÷2

水速=(顺水速度-逆水速度)÷2

公式说明:

(1)船在水中航行,比一般的行程问题又有了一个水流的影响,研究路程、速度与时间之间的数量关系称为流水行船问题。

(2)船顺水航行时,一方面按照船本身的速度即船速(船在静水中的速度)在水面行驶,同时水面又有水流动的速度在前行,水也带着船行进,因此顺水速度是船速与水速的和,即顺水速度=船速+水速。船逆水航行时,水流方向与船航行的方向相反,所以逆水速度是船速与水速的,即逆水速度=船速-水速。顺水速度与逆水速度相2个水速,所以水速=(顺水速度-逆水速度)÷2,船速二(顺水速度+逆水速度)÷2。

流水行船应用题:

[例1]一条船在河中行驶,顺水每小时行16千米,逆水每小时行10千米,求船在静水中的速度和水流速度各是多少千米。

分析:船顺水速度是每小时16千米,是船速与水速的和,逆水速度是每小时10千米,是船速与水速的。16+10=26(千米/时)正好是2个船速,由此可以求出船速是26÷2=13(千米/时)。再求出顺水速度减去船速16-13=3(千米/时),就是水速,或者(顺水速度-逆水速度)÷2,即(16-10)+2=3(千米/时)。

解船速:(16+10)÷2=13(千米/时)

水速:16-13=3(千米/时)

或(16-10)÷2=3(千米/时)

答:船在静水中的速度是每小时13千米,水速是每小时3千米。

[例2]一艘船在静水中的速度是每小时32千米,A、B两港口相距192千米,这艘船从A港口逆流而行12小时到达B港口,从B港口顺流返回A港口需多少小时?

分析:船从A港口逆流而行12小时到达相距192。米的B港口,可以求出逆水速度是192÷12=16(千米/时),根据船速是32千米/时,可求出水速是32-16=16(千米/时),进而知道顺水速度为32+16=48(千米/时)。根据行程问题中路程与速度的关系,可以求出由B港口顺流返回A港口的时间是192÷48=4(小时)。

解水速:32-192÷12=16(千米/时)

返回时间:192÷(32+16)=4(小时)

答:从B港口顺流返回A港口需4小时。

提醒:流水行船问题和行程问题的分析方法是一致的,只是要考虑顺流或逆流对船速的影响。

[例3]一条船在静水中的速度是每小时14千米,顺水航行12小时的路程,逆水要航行16小时,求水流速度是每小时多少千米。

分析:根据顺水的路程与逆水的路程相等,可以列方程解答,也可以用比例来解答。

解方法一:设水流速度为每小时x千米。

(14+x)×12=(14-x)×16

x=2

方法二:设水流速度为每小时x千米。

(14+x):(14-x)=16:12

x=2

答:水流速度是每小时2千米。

注意:顺流航行和逆流航行的路程是一样的,顺流速度快,时间就短,反之逆流速度慢,时间就长。

2.小学五年级奥数流水行船问题

1、一只小船在一条180千米长的河上航行,它顺水航行需用6小时,逆水航行需用9小时,如果有一只木箱只靠水的流动而漂移,若走完同样长距离需要几小时?

2、一只汽船在一条可上航行从A地到B地,如果它顺水航行需用3小时,返回逆水航行需要4小时,请问:如果一只木桶仅靠水的流动而漂移,走完同样长的距离需要多少小时?

3、甲、乙两地相距96千米,一船顺流由甲地去乙地需3小时,返回时因雨后涨水,所以用了8小时才回到甲地,平时水速为每小时8千米,求涨水后水速增加了多少千米?

4一只小船次顺水航行56千米,逆水航行20千米,共用12小时,第二次用同样的时间顺流航行40千米,逆流航行28千米,求这只小船的静水速度和水流速度?

5、一只小船顺水航行30千米再逆水航行6千米,共用8小时,如果在同一条河流中这条小船顺流航行18千米再逆流航行10千米也用8小时,求这只小船的静水速度和水流速度?

3.小学五年级奥数流水行船问题

1、一艘船在静水中每小时行25千米,顺水航行3小时共行90千米,求水流速度?

2、一艘客船每小时行驶27千米,在大河中顺水航行160千米,每小时水速是5千米,需要航行多少小时?

3、一艘军舰的静水速度为每小时行54千米,海水的速度是每小时行16千米,逆水航行798千米,需要用多少小时?

4、一艘船,在一条水流速度为每小时3千米的河水中航行,船逆水航行12小时,共行300千米,问这条船在静水中的速度是每小时行多少千米?

5、甲、乙两港间的水路长416千米,一只船从甲港开往乙港,顺水16小时到达,逆水返回时26小时到达,求船在静水中速度和水流速度?

6、船在河中航行,顺水每小时28千米,逆水每小时行22千米,求船速和水速?

7、甲、乙两地相距280千米,一艘客轮在两港间航行,顺流用去7小时,逆流用去10小时,则轮船的船速和水速各是多少?

8、甲、乙两船的静水速度是每小时24千米和每小时20千米,两船先后从某港口顺水开出,乙比甲早出发3小时,若水速是每小时4千米,问甲开出后几小时可追上乙?

9、甲、乙两船在静水中的速度分别为每小时24千米和18千米,两船先后自同一港中逆水而上,乙船比甲船早出发2小时,若水速是每小时3千米,问甲船开出几小时可追上乙船?

10、两码头相距231千米,轮船顺水行驶这段路程需要11小时,逆水比顺水每小时少行10千米,问行驶这段路程逆水比顺水需要多用几小时?

基本是记住两个公式就可以解决了。

顺水速度=船速+水速

逆水速度=船速-水速

小学奥数行程例题讲解:流水行船问题

解答:由题意可知,船在顺水中的速度是300÷5=60千米/小时,在逆水中的速度是300÷6=50千米/小时,所以静水速度是(60+50)÷2=55千米/小时,水流速度是(60-50)÷2=5千米/小时。

【二】

1.大沙河上、下游相距120千米,每天定时有甲、乙两艘船速相同的客轮从上、下游同时出发,面对面行驶.定这两艘客轮的船速都是每小时25千米,水速是每小时5千米,则两艘客轮在出发后几小时相遇?

解答:解:120÷(25-5+25+5),

=120÷50,

=2.4(小时).

答:两艘客轮在出发后2.4小时相遇.

【三】

在流水中的相遇和追及,水速不影响相遇和追及时间

例5A、B两码头间河流长90千米,甲乙两船分别从A、B码头,同时启航,如果相向而行,3小时相遇,如果同向而行,9小时,甲追上乙,求两船在静水中的速度?

分析

V甲顺=V甲船+V水

V乙顺=V乙船+V水

V乙逆=V乙船-V水

相遇

速度和=V甲顺+V乙逆

=V甲船+V水+V乙船-V水

=V甲船+V乙船

速度和=路程和÷相遇时间

=90÷3

=30(Km/h)

追及

速度=V甲顺-V乙顺

=V甲船+V水-(V乙船+V水)

=V甲船+V水-V乙船-V水

=V甲船-V乙船

速度=路程÷追及时间

=90÷9

=10(Km/h)

V甲船+V乙船=30

V甲船-V乙船=10

得到

V甲船=20(Km/h)

V乙船=10(Km/h)

答:甲船的速度为20千米每小时,乙船的速度为10千米每小时。

【 #小学奥数# 导语】天高鸟飞,海阔鱼跃,学习这舞台,秀出你独特的精彩用好分秒时间,积累点滴知识,解决疑难问题,学会举一反三。以下是 为大家整理的《五年级奥数流水行船问题试题及【三篇】》 供您查阅。

【篇】

1、一只船从甲港开往相距713千米的乙港,去时顺水23小时到达,返回时逆水则需要31个小时到达,请问船在静水中的速度和水流的速度各是多少?

2、一条河上有甲、乙两个码头,甲在乙的上游50千米处。客船和货船分别从甲、乙两码头同时出发向上驶,两船的静水速度相同且始终保持不变,客船 出发时有一物品从船上落入水中,10分钟后此物品距客船5千米,客船在行驶20千米后折向下游追赶此物,追上时恰好和货船相遇,求水流的速度。

1、解:(713÷23+713÷31)÷2=27(千米/时)

31-27=4(千米/时)

所以船在静水中的速度为每小时27千米,水流速度为每小时4千米。

2、分析:船在静水中的速度为每分钟5÷10=0.5(千米)。客船、货船与物品从出发到共同相遇所需的时间为50÷0.5=100(分钟)。客船掉头时,它与货船相距50千米。随后两船作相向运动,速度之和为船速的2倍,因此从调头到相遇所用的时间为50÷(0.5+0.5)=50(分钟)。于是客船逆水行驶20千米所用的时间为100-50=50分钟,从而船的逆水速度是每分钟20÷50=0.4(千米),水流速度为每分钟0.5-0.4=0.1(千米)

【第二篇】

已知一艘轮船顺水行48千米需4小时,逆水行48千米需6小时.现在轮船从上游A港到下游B港.已知两港间的水路长为72千米,开船时一旅客从窗口扔到水里一块木板,问船到B港时,木块离B港还有多远?

分析:顺水行速度为:48÷4=12(千米),逆水行速度为:48÷6=8(千米).

因为顺水速度是比船的速度多了水的速度,而逆水速度是船的速度再减去水的速度,因此顺水速度和逆水速度之间相的是“两个水的速度”,因此可求出水的速度为:(12-8)÷2=2(千米).

现条件为到下游,因此是顺水行驶,从A到B所用时间为:72÷12=6(小时).

木板从开始到结束所用时间与船相同,木板随水而飘,所以行驶的速度就是水的速度,可求出6小时木板的路程为:

6×2=12(千米);与船所到达的B地距离还:72-12=60(千米).

解:顺水行速度为:48÷4=12(千米),

逆水行速度为:48÷6=8(千米),

水的速度为:(12-8)÷2=2(千米),

从A到B所用时间为:72÷12=6(小时),

6小时木板的路程为:6×2=12(千米),

与船所到达的B地距离还:72-12=60(千米).

答:船到B港时,木块离B港还有60米.

点评:此题运用了关系式:(顺水速度-逆水速度)÷2=水速.

【第三篇】

例1:一艘船,在一条水流速度为每小时3千米的河水中航行,船逆水航行12小时,共行300千米,问这条船在静水中的速度是每小时行多少千米?

1、一艘船在静水中每小时行25千米,顺水航行3小时共行90千米,求水流速度?

2、一艘客船每小时行驶27千米,在大河中顺水航行160千米,每小时水速是5千米,需要航行多少小时?

3、一艘军舰的静水速度为每小时行54千米,海水的速度是每小时行16千米,逆水航行798千米,需要用多少小时?

例2:甲、乙两港间的水路长416千米,一只船从甲港开往乙港,顺水16小时到达,逆水返回时26小时到达,求船在静水中速度和水流速度?

1、船在河中航行,顺水每小时28千米,逆水每小时行22千米,求船速和水速?

2、甲、乙两地相距280千米,一艘客轮在两港间航行,顺流用去7小时,逆流用去10小时,则轮船的船速和水速各是多少?

例3:甲、乙两船的静水速度是每小时24千米和每小时20千米,两船先后从某港口顺水开出,乙比甲早出发3小时,若水速是每小时4千米,问甲开出后几小时可追上乙?

1、甲、乙两船在静水中的速度分别为每小时24千米和18千米,两船先后自同一港中逆水而上,乙船比甲船早出发2小时,若水速是每小时3千米,问甲船开出几小时可追上乙船?

2、两码头相距231千米,轮船顺水行驶这段路程需要11小时,逆水比顺水每小时少行10千米,问行驶这段路程逆水比顺水需要多用几小时?

例4:一只小船在一条180千米长的河上航行,它顺水航行需用6小时,逆水航行需用9小时,如果有一只木箱只靠水的流动而漂移,若走完同样长距离需要几小时?

1、一只汽船在一条可上航行从A地到B地,如果它顺水航行需用3小时,返回逆水航行需要4小时,请问:如果一只木桶仅靠水的流动而漂移,走完同样长的距离需要多少小时?

2、甲、乙两地相距96千米,一船顺流由甲地去乙地需3小时,返回时因雨后涨水,所以用了8小时才回到甲地,平时水速为每小时8千米,求涨水后水速增加了多少千米?

例5:一只小船次顺水航行56千米,逆水航行20千米,共用12小时,第二次用同样的时间顺流航行40千米,逆流航行28千米,求这只小船的静水速度和水流速度?

1、一只小船顺水航行30千米再逆水航行6千米,共用8小时,如果在同一条河流中这条小船顺流航行18千米再逆流航行10千米也用8小时,求这只小船的静水速度和水流速度?

2、一只小船顺水航行36千米,逆水航行24千米,共用7小时,用同样的时间顺流航行48千米,逆流航行18千米。求这只小船顺水航行72千米再逆水航行24千米需要几小时?

【 #小学奥数# 导语】解奥数题时,如果能合理的、科学的、巧妙的借助点、线、面、图、表将奥数问题直观形象的展示出来,将抽象的数量关系形象化,可使同学们容易搞清数量关系,沟通“已知”与“未知”的联系,抓住问题的本质,迅速解题。以下是 无 整理的《小学五年级奥数流水行船问题》相关资料,希望帮助到您。

1.小学五年级奥数流水行船问题

公式定律:

顺水速度=船速+水速

逆水速度=船速-水速

船速=(顺水速度+逆水速度)÷2

水速=(顺水速度-逆水速度)÷2

公式说明:

(1)船在水中航行,比一般的行程问题又有了一个水流的影响,研究路程、速度与时间之间的数量关系称为流水行船问题。

(2)船顺水航行时,一方面按照船本身的速度即船速(船在静水中的速度)在水面行驶,同时水面又有水流动的速度在前行,水也带着船行进,因此顺水速度是船速与水速的和,即顺水速度=船速+水速。船逆水航行时,水流方向与船航行的方向相反,所以逆水速度是船速与水速的,即逆水速度=船速-水速。顺水速度与逆水速度相2个水速,所以水速=(顺水速度-逆水速度)÷2,船速二(顺水速度+逆水速度)÷2。

流水行船应用题:

[例1]一条船在河中行驶,顺水每小时行16千米,逆水每小时行10千米,求船在静水中的速度和水流速度各是多少千米。

分析:船顺水速度是每小时16千米,是船速与水速的和,逆水速度是每小时10千米,是船速与水速的。16+10=26(千米/时)正好是2个船速,由此可以求出船速是26÷2=13(千米/时)。再求出顺水速度减去船速16-13=3(千米/时),就是水速,或者(顺水速度-逆水速度)÷2,即(16-10)+2=3(千米/时)。

解船速:(16+10)÷2=13(千米/时)

水速:16-13=3(千米/时)

或(16-10)÷2=3(千米/时)

答:船在静水中的速度是每小时13千米,水速是每小时3千米。

[例2]一艘船在静水中的速度是每小时32千米,A、B两港口相距192千米,这艘船从A港口逆流而行12小时到达B港口,从B港口顺流返回A港口需多少小时?

分析:船从A港口逆流而行12小时到达相距192。米的B港口,可以求出逆水速度是192÷12=16(千米/时),根据船速是32千米/时,可求出水速是32-16=16(千米/时),进而知道顺水速度为32+16=48(千米/时)。根据行程问题中路程与速度的关系,可以求出由B港口顺流返回A港口的时间是192÷48=4(小时)。

解水速:32-192÷12=16(千米/时)

返回时间:192÷(32+16)=4(小时)

答:从B港口顺流返回A港口需4小时。

提醒:流水行船问题和行程问题的分析方法是一致的,只是要考虑顺流或逆流对船速的影响。

[例3]一条船在静水中的速度是每小时14千米,顺水航行12小时的路程,逆水要航行16小时,求水流速度是每小时多少千米。

分析:根据顺水的路程与逆水的路程相等,可以列方程解答,也可以用比例来解答。

解方法一:设水流速度为每小时x千米。

(14+x)×12=(14-x)×16

x=2

方法二:设水流速度为每小时x千米。

(14+x):(14-x)=16:12

x=2

答:水流速度是每小时2千米。

注意:顺流航行和逆流航行的路程是一样的,顺流速度快,时间就短,反之逆流速度慢,时间就长。

2.小学五年级奥数流水行船问题

1、一只小船在一条180千米长的河上航行,它顺水航行需用6小时,逆水航行需用9小时,如果有一只木箱只靠水的流动而漂移,若走完同样长距离需要几小时?

2、一只汽船在一条可上航行从A地到B地,如果它顺水航行需用3小时,返回逆水航行需要4小时,请问:如果一只木桶仅靠水的流动而漂移,走完同样长的距离需要多少小时?

3、甲、乙两地相距96千米,一船顺流由甲地去乙地需3小时,返回时因雨后涨水,所以用了8小时才回到甲地,平时水速为每小时8千米,求涨水后水速增加了多少千米?

4一只小船次顺水航行56千米,逆水航行20千米,共用12小时,第二次用同样的时间顺流航行40千米,逆流航行28千米,求这只小船的静水速度和水流速度?

5、一只小船顺水航行30千米再逆水航行6千米,共用8小时,如果在同一条河流中这条小船顺流航行18千米再逆流航行10千米也用8小时,求这只小船的静水速度和水流速度?

3.小学五年级奥数流水行船问题

1、一艘船在静水中每小时行25千米,顺水航行3小时共行90千米,求水流速度?

2、一艘客船每小时行驶27千米,在大河中顺水航行160千米,每小时水速是5千米,需要航行多少小时?

3、一艘军舰的静水速度为每小时行54千米,海水的速度是每小时行16千米,逆水航行798千米,需要用多少小时?

4、一艘船,在一条水流速度为每小时3千米的河水中航行,船逆水航行12小时,共行300千米,问这条船在静水中的速度是每小时行多少千米?

5、甲、乙两港间的水路长416千米,一只船从甲港开往乙港,顺水16小时到达,逆水返回时26小时到达,求船在静水中速度和水流速度?

6、船在河中航行,顺水每小时28千米,逆水每小时行22千米,求船速和水速?

7、甲、乙两地相距280千米,一艘客轮在两港间航行,顺流用去7小时,逆流用去10小时,则轮船的船速和水速各是多少?

8、甲、乙两船的静水速度是每小时24千米和每小时20千米,两船先后从某港口顺水开出,乙比甲早出发3小时,若水速是每小时4千米,问甲开出后几小时可追上乙?

9、甲、乙两船在静水中的速度分别为每小时24千米和18千米,两船先后自同一港中逆水而上,乙船比甲船早出发2小时,若水速是每小时3千米,问甲船开出几小时可追上乙船?

10、两码头相距231千米,轮船顺水行驶这段路程需要11小时,逆水比顺水每小时少行10千米,问行驶这段路程逆水比顺水需要多用几小时?

基本是记住两个公式就可以解决了。

顺水速度=船速+水速

逆水速度=船速-水速

流水问题是研究船在流水中的行程问题,因此,又叫行船问题。在小学数学中涉及到的题目,一般是匀速运动的问题。这类问题的主要特点是,水速在船逆行和顺行中的作用不同。

流水问题有如下两个基本公式:

顺水速度=船速+水速 (1)

逆水速度=船速-水速 (2)

这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。

公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。

公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之。

根据加减互为逆运算的原理,由公式(1)可得:

水速=顺水速度-船速 (3)

船速=顺水速度-水速 (4)

由公式(2)可得:

水速=船速-逆水速度 (5)

船速=逆水速度+水速 (6)

这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。

另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之,根据和问题的算法,可知:

船速=(顺水速度+逆水速度)÷2 (7)

水速=(顺水速度-逆水速度)÷2 (8)

例1 一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。此船在静水中的速度是多少?(适于高年级程度)

解:此船的顺水速度是:

25÷5=5(千米/小时)

因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。

5-1=4(千米/小时)

综合算式:

25÷5-1=4(千米/小时)

答:此船在静水中每小时行4千米。

例2 一只渔船在静水中每小时航行4千米,逆水4小时航行12千米。水流的速度是每小时多少千米?(适于高年级程度)

解:此船在逆水中的速度是:

12÷4=3(千米/小时)

因为逆水速度=船速-水速,所以水速=船速-逆水速度,即:

4-3=1(千米/小时)

答:水流速度是每小时1千米。

例3一只船,顺水每小时行20千米,逆水每小时行12千米。这只船在静水中的速度和水流的速度各是多少?(适于高年级程度)

解:因为船在静水中的速度=(顺水速度+逆水速度)÷2,所以,这只船在静水中的速度是:

(20+12)÷2=16(千米/小时)

因为水流的速度=(顺水速度-逆水速度)÷2,所以水流的速度是:

(20-12)÷2=4(千米/小时)

答略。

例4某船在静水中每小时行18千米,水流速度是每小时2千米。此船从甲地逆水航行到乙地需要15小时。求甲、乙两地的路程是多少千米?此船从乙地回到甲地需要多少小时?(适于高年级程度)

解:此船逆水航行的速度是:

18-2=16(千米/小时)

甲乙两地的路程是:

16×15=240(千米)

此船顺水航行的速度是:

18+2=20(千米/小时)

此船从乙地回到甲地需要的时间是:

240÷20=12(小时)

答略。

例5某船在静水中的速度是每小时15千米,它从上游甲港开往乙港共用8小时。已知水速为每小时3千米。此船从乙港返回甲港需要多少小时?(适于高年级程度)

解:此船顺水的速度是:

15+3=18(千米/小时)

甲乙两港之间的路程是:

18×8=144(千米)

此船逆水航行的速度是:

15-3=12(千米/小时)

此船从乙港返回甲港需要的时间是:

144÷12=12(小时)

综合算式:

(15+3)×8÷(15-3)

=144÷12

=12(小时)

答略。

非常详细的流水行船问题讲解

解答:由题意可知,船在顺水中的速度是300÷5=60千米/小时,在逆水中的速度是300÷6=50千米/小时,所以静水速度是(60+50)÷2=55千米/小时,水流速度是(60-50)÷2=5千米/小时。

【二】

1.大沙河上、下游相距120千米,每天定时有甲、乙两艘船速相同的客轮从上、下游同时出发,面对面行驶.定这两艘客轮的船速都是每小时25千米,水速是每小时5千米,则两艘客轮在出发后几小时相遇?

解答:解:120÷(25-5+25+5),

=120÷50,

=2.4(小时).

答:两艘客轮在出发后2.4小时相遇.

【三】

在流水中的相遇和追及,水速不影响相遇和追及时间

例5A、B两码头间河流长90千米,甲乙两船分别从A、B码头,同时启航,如果相向而行,3小时相遇,如果同向而行,9小时,甲追上乙,求两船在静水中的速度?

分析

V甲顺=V甲船+V水

V乙顺=V乙船+V水

V乙逆=V乙船-V水

相遇

速度和=V甲顺+V乙逆

=V甲船+V水+V乙船-V水

=V甲船+V乙船

速度和=路程和÷相遇时间

=90÷3

=30(Km/h)

追及

速度=V甲顺-V乙顺

=V甲船+V水-(V乙船+V水)

=V甲船+V水-V乙船-V水

=V甲船-V乙船

速度=路程÷追及时间

=90÷9

=10(Km/h)

V甲船+V乙船=30

V甲船-V乙船=10

得到

V甲船=20(Km/h)

V乙船=10(Km/h)

答:甲船的速度为20千米每小时,乙船的速度为10千米每小时。

【 #小学奥数# 导语】天高鸟飞,海阔鱼跃,学习这舞台,秀出你独特的精彩用好分秒时间,积累点滴知识,解决疑难问题,学会举一反三。以下是 为大家整理的《五年级奥数流水行船问题试题及【三篇】》 供您查阅。

【篇】

1、一只船从甲港开往相距713千米的乙港,去时顺水23小时到达,返回时逆水则需要31个小时到达,请问船在静水中的速度和水流的速度各是多少?

2、一条河上有甲、乙两个码头,甲在乙的上游50千米处。客船和货船分别从甲、乙两码头同时出发向上驶,两船的静水速度相同且始终保持不变,客船 出发时有一物品从船上落入水中,10分钟后此物品距客船5千米,客船在行驶20千米后折向下游追赶此物,追上时恰好和货船相遇,求水流的速度。

1、解:(713÷23+713÷31)÷2=27(千米/时)

31-27=4(千米/时)

所以船在静水中的速度为每小时27千米,水流速度为每小时4千米。

2、分析:船在静水中的速度为每分钟5÷10=0.5(千米)。客船、货船与物品从出发到共同相遇所需的时间为50÷0.5=100(分钟)。客船掉头时,它与货船相距50千米。随后两船作相向运动,速度之和为船速的2倍,因此从调头到相遇所用的时间为50÷(0.5+0.5)=50(分钟)。于是客船逆水行驶20千米所用的时间为100-50=50分钟,从而船的逆水速度是每分钟20÷50=0.4(千米),水流速度为每分钟0.5-0.4=0.1(千米)

【第二篇】

已知一艘轮船顺水行48千米需4小时,逆水行48千米需6小时.现在轮船从上游A港到下游B港.已知两港间的水路长为72千米,开船时一旅客从窗口扔到水里一块木板,问船到B港时,木块离B港还有多远?

分析:顺水行速度为:48÷4=12(千米),逆水行速度为:48÷6=8(千米).

因为顺水速度是比船的速度多了水的速度,而逆水速度是船的速度再减去水的速度,因此顺水速度和逆水速度之间相的是“两个水的速度”,因此可求出水的速度为:(12-8)÷2=2(千米).

现条件为到下游,因此是顺水行驶,从A到B所用时间为:72÷12=6(小时).

木板从开始到结束所用时间与船相同,木板随水而飘,所以行驶的速度就是水的速度,可求出6小时木板的路程为:

6×2=12(千米);与船所到达的B地距离还:72-12=60(千米).

解:顺水行速度为:48÷4=12(千米),

逆水行速度为:48÷6=8(千米),

水的速度为:(12-8)÷2=2(千米),

从A到B所用时间为:72÷12=6(小时),

6小时木板的路程为:6×2=12(千米),

与船所到达的B地距离还:72-12=60(千米).

答:船到B港时,木块离B港还有60米.

点评:此题运用了关系式:(顺水速度-逆水速度)÷2=水速.

【第三篇】

例1:一艘船,在一条水流速度为每小时3千米的河水中航行,船逆水航行12小时,共行300千米,问这条船在静水中的速度是每小时行多少千米?

1、一艘船在静水中每小时行25千米,顺水航行3小时共行90千米,求水流速度?

2、一艘客船每小时行驶27千米,在大河中顺水航行160千米,每小时水速是5千米,需要航行多少小时?

3、一艘军舰的静水速度为每小时行54千米,海水的速度是每小时行16千米,逆水航行798千米,需要用多少小时?

例2:甲、乙两港间的水路长416千米,一只船从甲港开往乙港,顺水16小时到达,逆水返回时26小时到达,求船在静水中速度和水流速度?

1、船在河中航行,顺水每小时28千米,逆水每小时行22千米,求船速和水速?

2、甲、乙两地相距280千米,一艘客轮在两港间航行,顺流用去7小时,逆流用去10小时,则轮船的船速和水速各是多少?

例3:甲、乙两船的静水速度是每小时24千米和每小时20千米,两船先后从某港口顺水开出,乙比甲早出发3小时,若水速是每小时4千米,问甲开出后几小时可追上乙?

1、甲、乙两船在静水中的速度分别为每小时24千米和18千米,两船先后自同一港中逆水而上,乙船比甲船早出发2小时,若水速是每小时3千米,问甲船开出几小时可追上乙船?

2、两码头相距231千米,轮船顺水行驶这段路程需要11小时,逆水比顺水每小时少行10千米,问行驶这段路程逆水比顺水需要多用几小时?

例4:一只小船在一条180千米长的河上航行,它顺水航行需用6小时,逆水航行需用9小时,如果有一只木箱只靠水的流动而漂移,若走完同样长距离需要几小时?

1、一只汽船在一条可上航行从A地到B地,如果它顺水航行需用3小时,返回逆水航行需要4小时,请问:如果一只木桶仅靠水的流动而漂移,走完同样长的距离需要多少小时?

2、甲、乙两地相距96千米,一船顺流由甲地去乙地需3小时,返回时因雨后涨水,所以用了8小时才回到甲地,平时水速为每小时8千米,求涨水后水速增加了多少千米?

例5:一只小船次顺水航行56千米,逆水航行20千米,共用12小时,第二次用同样的时间顺流航行40千米,逆流航行28千米,求这只小船的静水速度和水流速度?

1、一只小船顺水航行30千米再逆水航行6千米,共用8小时,如果在同一条河流中这条小船顺流航行18千米再逆流航行10千米也用8小时,求这只小船的静水速度和水流速度?

2、一只小船顺水航行36千米,逆水航行24千米,共用7小时,用同样的时间顺流航行48千米,逆流航行18千米。求这只小船顺水航行72千米再逆水航行24千米需要几小时?

【 #小学奥数# 导语】解奥数题时,如果能合理的、科学的、巧妙的借助点、线、面、图、表将奥数问题直观形象的展示出来,将抽象的数量关系形象化,可使同学们容易搞清数量关系,沟通“已知”与“未知”的联系,抓住问题的本质,迅速解题。以下是 无 整理的《小学五年级奥数流水行船问题》相关资料,希望帮助到您。

1.小学五年级奥数流水行船问题

公式定律:

顺水速度=船速+水速

逆水速度=船速-水速

船速=(顺水速度+逆水速度)÷2

水速=(顺水速度-逆水速度)÷2

公式说明:

(1)船在水中航行,比一般的行程问题又有了一个水流的影响,研究路程、速度与时间之间的数量关系称为流水行船问题。

(2)船顺水航行时,一方面按照船本身的速度即船速(船在静水中的速度)在水面行驶,同时水面又有水流动的速度在前行,水也带着船行进,因此顺水速度是船速与水速的和,即顺水速度=船速+水速。船逆水航行时,水流方向与船航行的方向相反,所以逆水速度是船速与水速的,即逆水速度=船速-水速。顺水速度与逆水速度相2个水速,所以水速=(顺水速度-逆水速度)÷2,船速二(顺水速度+逆水速度)÷2。

流水行船应用题:

[例1]一条船在河中行驶,顺水每小时行16千米,逆水每小时行10千米,求船在静水中的速度和水流速度各是多少千米。

分析:船顺水速度是每小时16千米,是船速与水速的和,逆水速度是每小时10千米,是船速与水速的。16+10=26(千米/时)正好是2个船速,由此可以求出船速是26÷2=13(千米/时)。再求出顺水速度减去船速16-13=3(千米/时),就是水速,或者(顺水速度-逆水速度)÷2,即(16-10)+2=3(千米/时)。

解船速:(16+10)÷2=13(千米/时)

水速:16-13=3(千米/时)

或(16-10)÷2=3(千米/时)

答:船在静水中的速度是每小时13千米,水速是每小时3千米。

[例2]一艘船在静水中的速度是每小时32千米,A、B两港口相距192千米,这艘船从A港口逆流而行12小时到达B港口,从B港口顺流返回A港口需多少小时?

分析:船从A港口逆流而行12小时到达相距192。米的B港口,可以求出逆水速度是192÷12=16(千米/时),根据船速是32千米/时,可求出水速是32-16=16(千米/时),进而知道顺水速度为32+16=48(千米/时)。根据行程问题中路程与速度的关系,可以求出由B港口顺流返回A港口的时间是192÷48=4(小时)。

解水速:32-192÷12=16(千米/时)

返回时间:192÷(32+16)=4(小时)

答:从B港口顺流返回A港口需4小时。

提醒:流水行船问题和行程问题的分析方法是一致的,只是要考虑顺流或逆流对船速的影响。

[例3]一条船在静水中的速度是每小时14千米,顺水航行12小时的路程,逆水要航行16小时,求水流速度是每小时多少千米。

分析:根据顺水的路程与逆水的路程相等,可以列方程解答,也可以用比例来解答。

解方法一:设水流速度为每小时x千米。

(14+x)×12=(14-x)×16

x=2

方法二:设水流速度为每小时x千米。

(14+x):(14-x)=16:12

x=2

答:水流速度是每小时2千米。

注意:顺流航行和逆流航行的路程是一样的,顺流速度快,时间就短,反之逆流速度慢,时间就长。

2.小学五年级奥数流水行船问题

1、一只小船在一条180千米长的河上航行,它顺水航行需用6小时,逆水航行需用9小时,如果有一只木箱只靠水的流动而漂移,若走完同样长距离需要几小时?

2、一只汽船在一条可上航行从A地到B地,如果它顺水航行需用3小时,返回逆水航行需要4小时,请问:如果一只木桶仅靠水的流动而漂移,走完同样长的距离需要多少小时?

3、甲、乙两地相距96千米,一船顺流由甲地去乙地需3小时,返回时因雨后涨水,所以用了8小时才回到甲地,平时水速为每小时8千米,求涨水后水速增加了多少千米?

4一只小船次顺水航行56千米,逆水航行20千米,共用12小时,第二次用同样的时间顺流航行40千米,逆流航行28千米,求这只小船的静水速度和水流速度?

5、一只小船顺水航行30千米再逆水航行6千米,共用8小时,如果在同一条河流中这条小船顺流航行18千米再逆流航行10千米也用8小时,求这只小船的静水速度和水流速度?

3.小学五年级奥数流水行船问题

1、一艘船在静水中每小时行25千米,顺水航行3小时共行90千米,求水流速度?

2、一艘客船每小时行驶27千米,在大河中顺水航行160千米,每小时水速是5千米,需要航行多少小时?

3、一艘军舰的静水速度为每小时行54千米,海水的速度是每小时行16千米,逆水航行798千米,需要用多少小时?

4、一艘船,在一条水流速度为每小时3千米的河水中航行,船逆水航行12小时,共行300千米,问这条船在静水中的速度是每小时行多少千米?

5、甲、乙两港间的水路长416千米,一只船从甲港开往乙港,顺水16小时到达,逆水返回时26小时到达,求船在静水中速度和水流速度?

6、船在河中航行,顺水每小时28千米,逆水每小时行22千米,求船速和水速?

7、甲、乙两地相距280千米,一艘客轮在两港间航行,顺流用去7小时,逆流用去10小时,则轮船的船速和水速各是多少?

8、甲、乙两船的静水速度是每小时24千米和每小时20千米,两船先后从某港口顺水开出,乙比甲早出发3小时,若水速是每小时4千米,问甲开出后几小时可追上乙?

9、甲、乙两船在静水中的速度分别为每小时24千米和18千米,两船先后自同一港中逆水而上,乙船比甲船早出发2小时,若水速是每小时3千米,问甲船开出几小时可追上乙船?

10、两码头相距231千米,轮船顺水行驶这段路程需要11小时,逆水比顺水每小时少行10千米,问行驶这段路程逆水比顺水需要多用几小时?

基本是记住两个公式就可以解决了。

顺水速度=船速+水速

逆水速度=船速-水速

流水问题是研究船在流水中的行程问题,因此,又叫行船问题。在小学数学中涉及到的题目,一般是匀速运动的问题。这类问题的主要特点是,水速在船逆行和顺行中的作用不同。

流水问题有如下两个基本公式:

顺水速度=船速+水速 (1)

逆水速度=船速-水速 (2)

这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。

公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。

公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之。

根据加减互为逆运算的原理,由公式(1)可得:

水速=顺水速度-船速 (3)

船速=顺水速度-水速 (4)

由公式(2)可得:

水速=船速-逆水速度 (5)

船速=逆水速度+水速 (6)

这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。

另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之,根据和问题的算法,可知:

船速=(顺水速度+逆水速度)÷2 (7)

水速=(顺水速度-逆水速度)÷2 (8)

例1 一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。此船在静水中的速度是多少?(适于高年级程度)

解:此船的顺水速度是:

25÷5=5(千米/小时)

因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。

5-1=4(千米/小时)

综合算式:

25÷5-1=4(千米/小时)

答:此船在静水中每小时行4千米。

例2 一只渔船在静水中每小时航行4千米,逆水4小时航行12千米。水流的速度是每小时多少千米?(适于高年级程度)

解:此船在逆水中的速度是:

12÷4=3(千米/小时)

因为逆水速度=船速-水速,所以水速=船速-逆水速度,即:

4-3=1(千米/小时)

答:水流速度是每小时1千米。

例3一只船,顺水每小时行20千米,逆水每小时行12千米。这只船在静水中的速度和水流的速度各是多少?(适于高年级程度)

解:因为船在静水中的速度=(顺水速度+逆水速度)÷2,所以,这只船在静水中的速度是:

(20+12)÷2=16(千米/小时)

因为水流的速度=(顺水速度-逆水速度)÷2,所以水流的速度是:

(20-12)÷2=4(千米/小时)

答略。

例4某船在静水中每小时行18千米,水流速度是每小时2千米。此船从甲地逆水航行到乙地需要15小时。求甲、乙两地的路程是多少千米?此船从乙地回到甲地需要多少小时?(适于高年级程度)

解:此船逆水航行的速度是:

18-2=16(千米/小时)

甲乙两地的路程是:

16×15=240(千米)

此船顺水航行的速度是:

18+2=20(千米/小时)

此船从乙地回到甲地需要的时间是:

240÷20=12(小时)

答略。

例5某船在静水中的速度是每小时15千米,它从上游甲港开往乙港共用8小时。已知水速为每小时3千米。此船从乙港返回甲港需要多少小时?(适于高年级程度)

解:此船顺水的速度是:

15+3=18(千米/小时)

甲乙两港之间的路程是:

18×8=144(千米)

此船逆水航行的速度是:

15-3=12(千米/小时)

此船从乙港返回甲港需要的时间是:

144÷12=12(小时)

综合算式:

(15+3)×8÷(15-3)

=144÷12

=12(小时)

答略。

【 #小学奥数# 导语】芬芳袭人花枝俏,喜气盈门捷报到。心花怒放看通知,梦想实现今日事,喜笑颜开忆往昔,勤学苦读最美丽。在学习中学会复习,在运用中培养能力,在总结中不断提高。以下是 为大家整理的 《非常详细的流水行船问题讲解》供您查阅。

船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题。

流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到.此外,流水行船问题还有以下两个基本公式:

顺水速度=船速+水速,(1)

逆水速度=船速-水速.(2)

这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程。

根据加减法互为逆运算的关系,由公式(l)可以得到:

水速=顺水速度-船速,

船速=顺水速度-水速。

由公式(2)可以得到:

水速=船速-逆水速度,

船速=逆水速度+水速。

这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。

另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到:

船速=(顺水速度+逆水速度)÷2,

水速=(顺水速度-逆水速度)÷2。

例1 甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。

分析 根据题意,要想求出船速和水速,需要按上面的基本数量关系先求出顺水速度和逆水速度,而顺水速度和逆水速度可按行程问题的一般数量关系,用路程分别除以顺水、逆水所行时间求出。

解:

顺水速度:208÷8=26(千米/小时)

逆水速度:208÷13=16(千米/小时)

船速:(26+16)÷2=21(千米/小时)

水速:(26—16)÷2=5(千米/小时)

答:船在静水中的速度为每小时21千米,水流速度每小时5千米。

例2 某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?

分析 要想求从乙地返回甲地需要多少时间,只要分别求出甲、乙两地之间的路程和逆水速度。

解:

从甲地到乙地,顺水速度:15+3=18(千米/小时),

甲乙两地路程:18×8=144(千米),

从乙地到甲地的逆水速度:15—3=12(千米/小时),

返回时逆行用的时间:144÷12=12(小时)。

答:从乙地返回甲地需要12小时。

例3 甲、乙两港相距360千米,一轮船往返两港需35小时,逆流航行比顺流航行多花了5小时.现在有一机帆船,静水中速度是每小时12千米,这机帆船往返两港要多少小时?

分析 要求帆船往返两港的时间,就要先求出水速.由题意可以知道,轮船逆流航行与顺流航行的时间和与时间分别是35小时与5小时,用和问题解法可以求出逆流航行和顺流航行的时间.并能进一步求出轮船的逆流速度和顺流速度.在此基础上再用和问题解法求出水速。

解:

轮船逆流航行的时间:(35+5)÷2=20(小时),

顺流航行的时间:(35—5)÷2=15(小时),

轮船逆流速度:360÷20=18(千米/小时),

顺流速度:360÷15=24(千米/小时),

水速:(24—18)÷2=3(千米/小时),

帆船的顺流速度:12+3=15(千米/小时),

帆船的逆水速度:12—3=9(千米/小时),

帆船往返两港所用时间:

360÷15+360÷9=24+40=64(小时)。

答:机帆船往返两港要64小时。

下面继续研究两只船在河流中相遇问题.当甲、乙两船(甲在上游、乙在下游)在江河里相向开出,它们单位时间靠拢的路程等于甲、乙两船速度和.这是因为:

甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速-水速)=甲船船速+乙船船速。

这就是说,两船在水中的相遇问题与静水中的及两车在陆地上的相遇问题一样,与水速没有关系。

同样道理,如果两只船,同向运动,一只船追上另一只船所用的时间,也只与路程和船速有关,与水速无关.这是因为:

甲船顺水速度-乙船顺水速度

=(甲船速+水速)-(乙船速+水速)

=甲船速-乙船速。

如果两船逆向追赶时,也有

甲船逆水速度-乙船逆水速度

=(甲船速-水速)-(乙船速-水速)

=甲船速-乙船速。

这说明水中追及问题与在静水中追及问题及两车在陆地上追及问题一样。

由上述讨论可知,解流水行船问题,更多地是把它转化为已学过的相遇和追及问题来解答。

例4 小刚和小强租一条小船,向上游划去,不慎把水壶掉进江中,当他们发现并调过船头时,水壶与船已经相距2千米,定小船的速度是每小时4千米,水流速度是每小时2千米,那么他们追壶需要多少时间?

分析 此题是水中追及问题,已知路程是2千米,船在顺水中的速度是船速+水速.水壶飘流的速度只等于水速,所以速度=船顺水速度-水壶飘流的速度=(船速+水速)-水速=船速.

解:路程÷船速=追及时间

2÷4=0.5(小时)。

答:他们二人追回水壶需用0.5小时。

例5 甲、乙两船在静水中速度分别为每小时24千米和每小时32千米,两船从某河相距336千米的两港同时出发相向而行,几小时相遇?如果同向而行,甲船在前,乙船在后,几小时后乙船追上甲船?

解:①相遇时用的时间

336÷(24+32)

=336÷56

=6(小时)。

②追及用的时间(不论两船同向逆流而上还是顺流而下):

336÷(32—24)=42(小时)。

答:两船6小时相遇;乙船追上甲船需要42小时。

详细解读四年级奥数流水行船问题【三篇】

解答:由题意可知,船在顺水中的速度是300÷5=60千米/小时,在逆水中的速度是300÷6=50千米/小时,所以静水速度是(60+50)÷2=55千米/小时,水流速度是(60-50)÷2=5千米/小时。

【二】

1.大沙河上、下游相距120千米,每天定时有甲、乙两艘船速相同的客轮从上、下游同时出发,面对面行驶.定这两艘客轮的船速都是每小时25千米,水速是每小时5千米,则两艘客轮在出发后几小时相遇?

解答:解:120÷(25-5+25+5),

=120÷50,

=2.4(小时).

答:两艘客轮在出发后2.4小时相遇.

【三】

在流水中的相遇和追及,水速不影响相遇和追及时间

例5A、B两码头间河流长90千米,甲乙两船分别从A、B码头,同时启航,如果相向而行,3小时相遇,如果同向而行,9小时,甲追上乙,求两船在静水中的速度?

分析

V甲顺=V甲船+V水

V乙顺=V乙船+V水

V乙逆=V乙船-V水

相遇

速度和=V甲顺+V乙逆

=V甲船+V水+V乙船-V水

=V甲船+V乙船

速度和=路程和÷相遇时间

=90÷3

=30(Km/h)

追及

速度=V甲顺-V乙顺

=V甲船+V水-(V乙船+V水)

=V甲船+V水-V乙船-V水

=V甲船-V乙船

速度=路程÷追及时间

=90÷9

=10(Km/h)

V甲船+V乙船=30

V甲船-V乙船=10

得到

V甲船=20(Km/h)

V乙船=10(Km/h)

答:甲船的速度为20千米每小时,乙船的速度为10千米每小时。