对数转换指数公式 对数转换指数公式是什么
对数和指数的转换公式是什么?
公式如下:
对数转换指数公式 对数转换指数公式是什么
对数转换指数公式 对数转换指数公式是什么
对数转换指数公式 对数转换指数公式是什么
对数函数的一般形式为 y=logax,它实际上就是指数函数的反函数(图象关于直线y=x对称的两函数互为反函数),可表示为x=a^y,因此指数函数里对于a存在规定——a>0且a≠1,对于不同大小a会形成不同的函数图形:关于X轴对称、当a>1时,a越大,图像越靠近x轴、当0 对数的应用: 对数在数学内外有许多应用,这些中的一些与尺度不变性的概念有关,例如,鹦鹉螺的壳的每个室是下一个的大致副本,由常数因子缩放,这引起了对数螺旋,Benford关于领先数字分配的定律也可以通过尺度不变性来解释,对数也与自相似性相关。 对数算法出现在算法分析中,通过将算法分解为两个类似的较小问题并修补其解决方案来解决问题,自相似几何形状的尺寸,即其部分类似于整体图像的形状也基于对数,对数刻度对于量化与其异相反的值的相对变化是有用的。 对数的运算公式: 1、log(a) (M·N)=log(a) M+log(a) N 2、log(a) (M÷N)=log(a) M-log(a) N 3、log(a) M^n=nlog(a) M 4、log(a)blog(b)a=1 5、log(a) b=log (c) b÷log (c) a 指数的运算公式: 1、[a^m]×[a^n]=a^(m+n) 【同底数幂相乘,底数不变,指数相加】 2、[a^m]÷[a^n]=a^(m-n) 【同底数幂相除,底数不变,指数相减】 3、[a^m]^n=a^(mn) 【幂的乘方,底数不变,指数相乘】 4、[ab]^m=(a^m)×(a^m) 【积的乘方,等于各个因式分别乘方,再把所得的幂相乘】 扩展资料: 对数的发展历史: 将对数加以改造使之广泛流传的是纳皮尔的朋友布里格斯(H.Briggs,1561—1631),他通过研究《奇妙的对数定律说明书》,感到其中的对数用起来很不方便,于是与纳皮尔商定,使1的对数为0,10的对数为1,这样就得到了以10为底的常用对数。 由于所用的数系是十进制,因此它在数值上计算具有优越性。1624年,布里格斯出版了《对数算术》,公布了以10为底包含1~20000及90000~100000的14位常用对数表。 根据对数运算原理,人们还发明了对数计算尺。300多年来,对数计算尺一直是科学工作者,特别是工程技术人员必备的计算工具,直到20世纪70年代才让位给电子计算器。但是,对数的思想方法却仍然具有生命力。 从对数的发明过程可以看到,生产、科学技术的需要是数学发展的主要动力。建立对数与指数之间的联系的过程表明,使用较好的符号体系对于数学的发展是至关重要的。实际上,好的数学符号能够大大地节省人的思维负担。数学家们对数学符号体系的发展与完善作出了长期而艰苦的努力 ln公式如下: ln(MN)=lnM+lnN ln(M/N)=lnM-lnN ln(M^n)=nlnM ln1=0 lne=1 注意,拆开后,M,N需要大于0。没有ln(M+N)=lnM+lnN,和ln(M-N)=lnM-lnN。lnx是e^x的反函数,也就是说ln(e^x)=x求lnx等于多少,就是问e的多少次方等于x。 对数和指数的转换 指数与对数的转换公式是a^y=x→y=log(a)(x)。在实际计算的过程中,指数和对数的转换,可以利用指数或者是对数函数的单调性,这样就可以比较出来对数式或者是指数式的大小了。 a^y=x→y=log(a)(x) [y=log以a为底x的对数]这就是将指数转换为对数。 指数式变成对数式的方法如下: 1、可通过指数函数或对数函数的单调性来比较两个指数式或对数式的大小。 2、求函数y=af(x)的单调区间,应先求出f(x)的单调区间,然后根据y=au的单调性来求出函数y=af(x)的单调区间.求函数y=logaf(x)的单调区间,则应先求出f(x)的单调区间,然后根据y=logau的单调性来求出函数y=logaf(x)的单调区间. 3、根据对数的定义,可将一些对数问题转化为指数问题来解。 扩展资料 对数和指数运算性质: 1、 +2、 3、 =n (n∈R)。 4、 5、 6、 7、 已知对数式的值,要求指数式的值,可将对数式转化为指数式,再利用指数式的运算求值;思路二,对指数式的两边取同底的对数,再利用对数式的运算求值。对数运算比指数运算来得方便,因此以指数形式出现的式子,可利用取对数的方法,把指数运算转化为对数运算。 参考资料:搜狗百科—对数变换 设指数函数为y=a^x 两边取以a为底的对数,变为:log(a)y=x 同底时,指数函数与对数函数互为反函数 (1+n)^7=10 1+n=10^(1/7) n=10^(1/7)-1 这是指数函数的运算 这些都是要在高中学习的 幂函数y=x^n 底数为自变量 指数函数y=a^x 指数为自变量 对数函数y=log ax 此时x=a^y 幂为自变量 三角函数y=sinx 等反三角函数 三角函数的反函数就是反三角函数 一般的转换方法是同时取指数或对数。如 a=lnb,转换成指数形式,可以两边同取e的指数,得e^a=e^(lnb)=b e^a=b,转换成对数形式,可以两边同取对数,得ln(e^a)=a=lnb 指数和对数的转换公式表示为x=a^y。 对数与指数之间的关系:当a大于0,a不等于1时,a的X次方=N等价于log(a)N=x。log(a^k)(M^n)=(n/k)log(a)(M)(n属于R)。 换底公式(很重要):log(a)(N)=log(b)(N)/log(b)(a)=lnN/lna=lgN/lga。ln自然对数以e为底e为无限不循环小数(通常情况下只取e=2.71828)。lg常用对数以10为底。 指数函数的定义域为R,这里的前提是a大于0且不等于1,对于a不大于0的情况则必然使得函数的定义域不连续,因此我们不予考虑,同时a等于0函数无意义一般也不考虑,指数函数的值域为(0,+),函数图形都是上凹的。 对数函数的一般形式为 y=logax,它实际上就是指数函数的反函数,可表示为x=a^y,因此指数函数里对于a存在规定a>0且a≠1,对于不同大小a会形成不同的函数图形关于X轴对称、当a>1时a越大,图像越靠近x轴、当0 两种形式的相互转化,熟练应用公式1oga1=0,1ogaa=1,alogaM=M,logaan=n,有时对数运算比指数运算来得方便,因此以指数形式出现的式子,可利用取对数的方法,把指数运算转化为对数运算。 有时对数运算比指数运算来得方便,因此以指数形式出现的式子,可利用取对数的方法,把指数运算转化为对数运算。对数、指数怎么相互转换?
ln公式是什么呢?
对数和指数怎样转换? (需要详细一点)
指数函数与对数函数的转换公式
对数和指数怎样转换? (需要详细一点)
指数和对数怎么互换
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系 836084111@qq.com 删除。