电商数据分析有什么方法?

1、市场分析 有市场需求的产品,即使产品品质很好也是没有前(钱)途的。虽然目前淘系电商推广渠道多样化了,但是到目前为止绝大多数客户仍然是通过搜索找到需要的产品。所以如果你产品相关的在淘宝上搜索量过少,至少说明当下是不太适合在淘宝上销售。

电商市场数据分析 电商市场数据查询电商市场数据分析 电商市场数据查询


电商市场数据分析 电商市场数据查询


电商市场数据分析 电商市场数据查询


2、同行分析 做生意是一定要研究对手数据的,可以这么说,在当下电商运营中,同行的信息应该是最有价值的。这也是很多运营必须要做的事——其实在和分析同行的店铺。

3、分析自己店铺 数据是店铺问题诊断的基础,当我们的店铺出现问题,比如说流量下滑、转化率下滑,这肯定是有原因的,绝大多数原因我们能够通过逻辑分析去判断出个大概,我们所有的分析和判断都必须要通过数据去进行一个验证和分析,如果不经过这一步,你只是主观上分析的话,很容易出错。

电商怎么做数据分析

1、列表法

将数据按一定规律用列表方式表达出来,是记录和处理最常用的方法。表格的设计要求对应关系清楚,简单明了,有利于发现相关量之间的相关关系;此外还要求在标题栏中注明各个量的名称、符号、数量级和单位等:根据需要还可以列出除原始数据以外的计算栏目和统计栏目等。

2、作图法

作图法可以最醒目地表达各个物理量间的变化关系。从图线上可以简便求出实验需要的某些结果,还可以把某些复杂的函数关系,通过一定的变换用图形表示出来。

图表和图形的生成方式主要有两种:手动制表和用程序自动生成,其中用程序制表是通过相应的软件,例如SPSS、Excel、MATLAB等。将调查的数据输入程序中,通过对这些软件进行作,得出结果,结果可以用图表或者图形的方式表现出来。图形和图表可以直接反映出调研结果,这样大大节省了设计师的时间,帮助设计者们更好地分析和预测市场所需要的产品,为进一步的设计做铺垫。同时这些分析形式也运用在产品销售统计中,这样可以直观地给出最近的产品销售情况,并可以及时地分析和预测未来的市场销售情况等。

电子商务数据分析包括哪些内容?

构建电商数据分析的基本指标体系,主要分为8个类指标。

1.总体运营指标:从流量、订单、总体销售业绩、整体指标进行把控,起码对运营的电商平台有个大致了解,到底运营的怎么样,是亏是赚。

2.网站流量指标:即对访问你网站的访客进行分析,基于这些数据可以对网页进行改进,以及对访客的行为进行分析等等。

3.销售转化指标:分析从下单到支付整个过程的数据,帮助你提升商品转化率。也可以对一些频繁异常的数据展开分析。

4.客户价值指标:这里主要就是分析客户的价值,可以建立RFM价值模型,找出那些有价值的客户,精准营销等等。

5.商品类指标:主要分析商品的种类,那些商品卖得好,库存情况,以及可以建立关联模型,分析那些商品同时销售的几率比较高,而进行捆绑销售,有点像啤酒喝尿布的故事。

6.市场营销活动指标,主要某次活动给电商网站带来的效果,以及广告的投放指标。

7.风控类指标:分析卖家评论,以及投诉情况,发现问题,改正问题。

8.市场竞争指标:主要分析市场份额以及网站排名,进一步进行调整。

电商数据分析要掌握哪些数据指标?

【导读】在电商行业当中,通常涉及到六大部门,且各个部门当中,业务框架以运营为导向。那么,在电商数据分析中,我们需要掌握哪些数据指标呢?今天就跟随小编一起来了解下吧!

运营模块

运营的主要职责是达成销售目标,同时控制运营成本。所以在这一模块我们主要关注三个数据指标:业绩达标率、业绩增长率、销售利润额。这三个指标非常好理解,主要是用来综合评估运营水平。

商品模块

这一模块主要涉及两个职能,商品企划和商品运营。

商品企划的主要职能是在一个销售周期内,对商品的品类、价格带、风格、销售进度进行整体把控,避免使用单一产品冲业绩。

商品运营的主要职能是负责商品的上架、入库以及主推策划,通常流程是:测款-养款-爆款-返单。当然,一个店铺也不能打造过多的爆款,爆款的增多会损害品牌调性,到这一旦折扣下降就会引起消费者流失的局面。

市场模块

市场模块是仅次于运营的第二大模块,同时又和运营的工作密不可分。主要包括市场推广投放、会员维护、活动包装等等。

其中,推广是一个店铺的重中之重,也是我们数据分析的主要对象,推广包括包括付费和免费两种渠道,付费渠道比如我们熟知的直通车、钻展等等,免费推广如微博、贴吧等等。定时的进行会员维护会促进会员沉淀,活跃的会员可以有效的节省推广费用。

视觉设计模块

这部分模块中,我们主要分析的还是店铺流量的漏斗转化路径。主要涉及的包括:页面逻辑、标签分类、主推商品。这部内容对应的就是我们常说的流量分析,分析客户的访问路径,并结合漏斗模型,看看那部分的转化对最终的转化率影响并进行优化。

关于电商数据分析要掌握哪些数据指标,小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

电商平台应该分析哪些数据?具体怎么去分析

众所周知,电商平台定期都要对商品销售进行分析,比如针对各个不同商品的销量、库存分析、商品评论等。做商品数据分析,可以从时间维度或者从不同商品的类别、价格等多个维度来做分析,这里可以做的数据图表类型很多。

一、时间维度

从时间维度上来看,除了显示分析周期的数据,最常用的分析方式是同比和环比,时间区间可以是年、季和月,甚至是周,不过周相对用的少。

二、商品类别、价格维度

本次分析我主要是从商品类别、价格等多角度来进行商品数据分析,先是商品总的数据预览,如图(图表在BDP个人版上制作的):

这是选取8月23日的数据,可以看出,整个平台的上架的商品量还有4372万,量还比较多;商品好评率为93%,是整个平台的平均值,那应该还算不错啦!本月的月销量还有12%,只有24-31日一共8天,完成剩下的12%应该问题不大,相当于这个超额完成销量啦,是不是平台近期上架了很多夏天商品,所以8月份超额完成也是正常,比如游泳三件套、风扇等等。还是这个月做了什么活动,让这个月的销量比预定的目标稍微好一些......数据真实的反应是这样,至于原因还是需要自己去找哈。

自己平台上的上架商品的数量、价格分布情况,作为应该很了解的,均价当然也要了解,均价可能直接影响到网站客单价,网站的价格定位甚至是主要人群定位都会很清晰。比如,某个网站均价5000,那可能可以属于轻品网站了,可能主要人群是年收入过10万的女白领等等,这个依不同网站而定。

以上只是简单分析商品的某些数据,商品还能进行关联性、TOP10、采购情况等分析,大家依据自己的网站实际情况进行分析。当然,电商平台除了商品分析,还有订单数据、用户行为等分析,有空再一起探讨!

电商怎么做数据分析

电商数据分析的常用方法有:逻辑树分析法;PEST分析法;度拆解法;对比分析法;设检验分析法。

1、逻辑树分析:逻辑树分析法的目的是把复杂的问题变简单,即把一个问题当成树干,然后找出所有充当树枝的子问题,并以此类推,逐步找到一个个具体而直接的子问题,从而找到解决复杂问题的方法。

2、PEST分析法:用于做行业分析,是通过Politics,经济Economy,Society和技术Technology四个因素来分析宏观环境的方法,其应用领域有公司战略规划,市场经营规划,产品发展规划,撰写研究报告等。

3、度拆解法:目的是从多个维度思考问题,即从多个角度出发,把一个复杂问题拆解成多个简单的子问题去解决,其把问题整体拆解成多个部分,通过对比可以看出不同整体之间部分的异。

4、对比分析法:通过对比找异,从而业务是否存在问题的方法。使用对比分析法,要搞清楚两个问题,一是和谁比,二是如何比。

5、设检验分析法:归因分析,即分析问题发生的原因,其底层逻辑是逻辑推理,分为3个步骤,分别是:提出设,收集证据,得出结论。