七年级上学期数学第二单元关于有理数的计算题?

值是π=__________; (4)3.1416保留三个有效数字的近似值是_____________;

七年级上学期数学第二单元关于有理数的计算题七年级上学期数学第二单元关于有理数的计算题


七年级上学期数学第二单元关于有理数的计算题


七年级上学期数学第二单元关于有理数的计算题


(三)判断题:

(1)近似数25.0以个痊,有效数字是2,5; (2)近似数4千和近似数4000的程度一样; (3)近似数4千和近似数410^3的程度一样; (4)9.949到0.01的近似数是9.95.

练习八(B级)

(一)用四舍五入法对下列各数取近似值(要求保留三个有效数字): (1)37.27 (2)810.9 (3)0.0045078 (4)3.079

(二)用四舍五入法对下列各数取近似值(要求到千位): (1)37890.6 (2)213612.4 (3)1906.57

9.

9x^2(x-1)^2-3(x^2-x)-56

=9x^2(x-1)^2-3x(x-1)-56

=[3x(x-1)-8][3x(x-1)+7]

=(3x^2-3x-8)(3x^2-3x+7

祝您学习进步!我的手都酸了.

七年级上学期数学第二单元关于有理数的计算题?

75÷〔138÷(100-54)〕 85×(95-1440÷24)

80400-(4300+870÷15) 240×78÷(154-115)

1437×27+27×563 〔75-(12+18)〕÷15

2160÷〔(83-79)×18〕 280+840÷24×5

325÷13×(266-) 85×(95-1440÷24)

58870÷(105+20×2) 1437×27+27×563

81432÷(13×52+78) [37.85-(7.85+6.4)] ×30

156×[(17.7-7.2)÷3] (947-599)+76×64

36×(3-276÷23) [192-(54+38)]×67

[(7.1-5.6)×0.9-1.15]÷2.5 81432÷(13×52+78)

5.4÷[2.6×(3.7-2.9)+0.62] (947-599)+76×64 60-(9.5+28.9)]÷0.18 2.881÷0.43-0.24×3.5 20×[(2.44-1.8)÷0.4+0.15] 28-(3.4 1.25×2.4) 0.8×〔15.5-(3.21 5.79)〕 (31.8 3.2×4)÷5 194-64.8÷1.8×0.9 36.72÷4.25×9.9 3.416÷(0.016×35) 0.8×[(10-6.76)÷1.2]

(136+64)×(65-345÷23) (6.8-6.8×0.55)÷8.5

0.12× 4.8÷0.12×4.8 (58+37)÷(64-9×5)

812-700÷(9+31×11) (3.2×1.5+2.5)÷1.6

85+14×(14+208÷26) 120-36×4÷18+35

(284+16)×(512-8208÷18) 9.72×1.6-18.305÷7

4/7÷[1/3×(3/5-3/10)] (4/5+1/4)÷7/3+7/10

12.78-0÷( 13.4+156.6 ) 37.812-700÷(9+31×11) (136+64)×(65-345÷23) 3.2×(1.5+2.5)÷1.6

85+14×(14+208÷26) (58+37)÷(64-9×5)

(6.8-6.8×0.55)÷8.5 (284+16)×(512-8208÷18)

0.12× 4.8÷0.12×4.8 (3.2×1.5+2.5)÷1.6

120-36×4÷18+35 10.15-10.75×0.4-5.7

5.8×(3.87-0.13)+4.2×3.74 347+45×2-4160÷52

32.52-(6+9.728÷3.2)×2.5 87(58+37)÷(64-9×5)

[(7.1-5.6)×0.9-1.15] ÷2.5 (3.2×1.5+2.5)÷1.6

5.4÷[2.6×(3.7-2.9)+0.62] 12×6÷(12-7.2)-6

3.2×6+(1.5+2.5)÷1.6 (3.2×1.5+2.5)÷1.6

5.8×(3.87-0.13)+4.2×3.74

33.02-(148.4-90.85)÷21)23+(-73)

(2)(-84)+(-49)

(3)7+(-2.04)

(4)4.23+(-7.57)

(5)(-7/3)+(-7/6)

(6)9/4+(-3/2)

(7)3.75+(2.25)+5/4

(8)-3.75+(+5/4)+(-1.5)

(9)(-17/4)+(-10/3)+(+13/3)+(11/3)

(10)(-1.8)+(+0.2)+(-1.7)+(0.1)+(+1.8)+(+1.4)

(11)(+1.3)-(+17/7)

(12)(-2)-(+2/3)

(13)|(-7.2)-(-6.3)+(1.1)|

(14)|(-5/4)-(-3/4)|-|1-5/4-|-3/4|)

(15)(-2/199)(-7/6-3/2+8/3)

(16)4a)(-3b)(5c)1/6

还有50道题,不过没有

1. 3/7 × 49/9 - 4/3

2. 8/9 × 15/36 + 1/27

3. 12× 5/6 – 2/9 ×3

4. 8× 5/4 + 1/4

5. 6÷ 3/8 – 3/8 ÷6

6. 4/7 × 5/9 + 3/7 × 5/9

7. 5/2 -( 3/2 + 4/5 )

8. 7/8 + ( 1/8 + 1/9 )

9. 9 × 5/6 + 5/6

10. 3/4 × 8/9 - 1/3

0.12χ+1.8×0.9=7.2 (9-5χ)×0.3=1.02 6.4χ-χ=28+4.4

11. 7 × 5/49 + 3/14

12. 6 ×( 1/2 + 2/3 )

13. 8 × 4/5 + 8 × 11/5

14. 31 × 5/6 – 5/6

15. 9/7 - ( 2/7 – 10/21 )

16. 5/9 × 18 – 14 × 2/7

17. 4/5 × 25/16 + 2/3 × 3/4

18. 14 × 8/7 – 5/6 × 12/15

19. 17/32 – 3/4 × 9/24

20. 3 × 2/9 + 1/3

21. 5/7 × 3/25 + 3/7

22. 3/14 ×× 2/3 + 1/6

23. 1/5 × 2/3 + 5/6

24. 9/22 + 1/11 ÷ 1/2

25. 5/3 × 11/5 + 4/3

26. 45 × 2/3 + 1/3 × 15

27. 7/19 + 12/19 × 5/6

28. 1/4 + 3/4 ÷ 2/3

29. 8/7 × 21/16 + 1/2

30. 101 × 1/5 – 1/5 × 21

31.50+160÷40 (58+370)÷(64-45)

32.120-144÷18+35

33.347+45×2-4160÷52

34(58+37)÷(64-9×5)

35.95÷(64-45)

36.178-145÷5×6+42 420+580-64×21÷28

37.812-700÷(9+31×11) (136+64)×(65-345÷23)

38.85+14×(14+208÷26)

39.(284+16)×(512-8208÷18)

40.120-36×4÷18+35

41.(58+37)÷(64-9×5)

42.(6.8-6.8×0.55)÷8.5

43.0.12× 4.8÷0.12×4.8

44.(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.6

45.6-1.6÷4= 5.38+7.85-5.37=

46.7.2÷0.8-1.2×5= 6-1.19×3-0.43=

47.6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.9

48.10.15-10.75×0.4-5.7

49.5.8×(3.87-0.13)+4.2×3.74

50.32.52-(6+9.728÷3.2)×2.5

51.-5+58+13+90+78-(-56)+50

52.-72-57/(3

53.(-7)2/(1/3)+79/(3+6/4)

54.123+456+789+98/(-4)

55.369/33-(-54-31/15.5)

56.39+{3x[42/2x(3x8)]}

57.9x8x7/5x(4+6)

58.11x22/(4+12/2)

59.94+(-60)/10

.5

100t+1202.1T

七年级数学上册、二单元知识点

章数学与我们同行

一、生活数学

1、生活中的数学

观察、积累生活中常见的数学符号,了解它们表达的意义

如:号码、邮政编码……

2、生活中的图形

观察、认识生活中的图形,感知它们与数学知识的联系

如:城市建筑群、超市的商品……

二、活动思考

1、数学活动——动手作、探索新知

数学活动包括观察、试验、作、猜想、归纳等。

2、数学思考——规律探索

数形结合、从特殊到一般的思想方法图形规律、数字规律

三、思想方法

转化思想、建模思想、归纳思想、从特殊到一般……

四、常见题型

探究数字、图形规律题

实践作题

图案设计题

简单的数字推理题

第二章有理数

一、正数和负数

1、正数和负数的概念

(1)负数:比0小的数。

(2)正数:比0大的数。

0既不是正数,也不是负数。

(3)注意:

①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)。

②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。

2、具有相反意义的量

若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃。

3、0表示的意义

(1)0表示“没有”,如教室里有0个人,就是说教室里没有人;

(2)0是正数和负数的分界线,0既不是正数,也不是负数。

二、有理数

1、有理数的概念

(1)正整数、0、负整数统称为整数(0和正整数统称为自然数)。

(2)正分数和负分数统称为分数。

(3)正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

2、理解:只有能化成分数的数才是有理数。

(1)π是无限不循环小数,不能写成分数形式,不是有理数。

(2)②有限小数和无限循环小数都可化成分数,都是有理数。

3、注意:

引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

三、数轴

1、数轴的概念

(1)规定了原点,正方向,单位长度的直线叫做数轴。

(2)注意:

①数轴是一条向两端无限延伸的直线;

②原点、正方向、单位长度是数轴的三要素,三者缺一不可;

③同一数轴上的单位长度要统一;

④数轴的三要素都是根据实际需要规定的。

2、数轴上的点与有理数的关系

(1)所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

(2)所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点π不是有理数)

3.利用数轴表示两数大小

(1)在数轴上数的大小比较,右边的数总比左边的数大;

(2)正数都大于0,负数都小于0,正数大于负数;

(3)两个负数比较,距离原点远的数比距离原点近的数小。

4.数轴上特殊的(小)数

(1)小的自然数是0,无的自然数;

(2)小的正整数是1,无的正整数;

(3)的负整数是-1,无小的`负整数。

5.a可以表示什么数

(1)a>0表示a是正数;反之,a是正数,则a>0;

(2)a<0表示a是负数;反之,a是负数,则a<0;

(3)a=0表示a是0;反之,a是0,,则a=0。

6.数轴上点的移动规律

根据点的移动,向左移动几个单位长度则减去几,向右移动几个单位长度则加上几,从而得到所需的点的位置。

四、相反数

1、相反数

只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。

注意:

(1)相反数是成对出现的;

(2)相反数只有符号不同,若一个为正,则另一个为负;

(3)0的相反数是它本身;相反数为本身的数是0。

2.相反数的性质与判定

(1)任何数都有相反数,且只有一个;

(2)0的相反数是0;

(3)互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0。

3.相反数的几何意义

在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。0的相反数对应原点;原点表示0的相反数。

说明:在数轴上,表示互为相反数的两个点关于原点对称。

4.相反数的求法

(1)求一个数的相反数,只要在它的前面添上负号“-”即可求得(如:5的相反数是-5);

(2)求多个数的和或的相反数是,要用括号括起来再添“-”,然后化简(如;5a+b的相反数是-(5a+b)。化简得-5a-b);

(3)求前面带“-”的单个数,也应先用括号括起来再添“-”,然后化简(如:-5的相反数是-(-5),化简得5)

5.相反数的表示方法

(1)一般地,数a的相反数是-a,其中a是任意有理数,可以是正数、负数或0。

①当a>0时,-a<0(正数的相反数是负数)

②当a<0时,-a>0(负数的相反数是正数)

③当a=0时,-a=0,(0的相反数是0)

6.多重符号的化简

多重符号的化简规律:“+”号的个数不影响化简的结果,可以直接省略;“-”号的个数决定化简结果;即:“-”的个数是奇数时,结果为负,“-”的个数是偶数时,结果为正。

五、

1、的几何定义

一般地,数轴上表示数a的点与原点的距离叫做a的,记作|a|。

2、的代数定义

(1)一个正数的是它本身;

(2)一个负数的是它的相反数;

(3)0的是0。

3、可用字母表示为

(1)如果a>0,那么|a|=a;

(2)如果a<0,那么|a|=-a;

(3)如果a=0,那么|a|=0。

4、可归纳为

(1)a≥0,<═>|a|=a(非负数的等于本身;等于本身的数是非负数。)

(2)a≤0,<═>|a|=-a(非正数的等于其相反数;等于其相反数的数是非正数。)

5、的性质

任何一个有理数的都是非负数,也就是说具有非负性。所以,a取任何有理数,都有|a|≥0。即

(1)0的是0;是0的数是0.即:a=0<═>|a|=0;

(2)一个数的是非负数,小的数是0.即:|a|≥0;

(3)任何数的都不小于原数。即:|a|≥a;

(4)是相同正数的数有两个,它们互为相反数。即:若|x|=a(a>0),则x=±a;

(5)互为相反数的两数的相等。即:|-a|=|a|或若a+b=0,则|a|=|b|;

(6)相等的两数相等或互为相反数。即:|a|=|b|,则a=b或a=-b;

(7)若几个数的的和等于0,则这几个数就同时为0。即|a|+|b|=0,则a=0且b=0。(非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)

6、有理数大小的比较

(1)利用数轴比较两个数的大小:数轴上的两个数相比较,左边的总比右边的小;

(2)利用比较两个负数的大小:两个负数比较大小,大的反而小;异号两数比较大小,正数大于负数。

7、的化简

(1)当a≥0时,|a|=a;

(2)当a≤0时,|a|=-a。

8、已知一个数的,求这个数一个数a的就是数轴上表示数a的点到原点的距离,一般地,为同一个正数的有理数有两个,它们互为相反数,为0的数是0,没有为负数的数。

六、有理数的加减法

1.有理数的加法法则

(1)同号两数相加,取相同的符号,并把相加;

(2)不相等的异号两数相加,取较大的加数的符号,并用较大的减去较小的;

(3)互为相反数的两数相加,和为零;

(4)一个数与零相加,仍得这个数。

2.有理数加法的运算律

(1)加法交换律:a+b=b+a

(2)加法结合律:(a+b)+c=a+(b+c)

在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律:

①互为相反数的两个数先相加——“相反数结合法”;

②符号相同的两个数先相加——“同号结合法”;

③分母相同的数先相加——“同分母结合法”;

④几个数相加得到整数,先相加——“凑整法”;

⑤整数与整数、小数与小数相加——“同形结合法”。

3.加法性质

一个数加正数后的和比原数大;加负数后的和比原数小;加0后的和等于原数。即:

(1)当b>0时,a+b>a

(2)当b<0时,a+b

(3)当b=0时,a+b=a

4.有理数减法法则

减去一个数,等于加上这个数的相反数。用字母表示为:a-b=a+(-b)。

5.有理数加减法统一成加法的意义

(1)在有理数加减法混合运算中,根据有理数减法法则,可以将减法转化成加法后,再按照加法法则进行计算。

(2)在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式。如:(-8)+(-7)+(-6)+(+5)=-8-7-6+5.

(3)和式的读法:

①按这个式子表示的意义读作“负8、负7、负6、正5的和”;

②按运算意义读作“负8减7减6加5”。

七、有理数的乘除法

1.有理数的乘法法则

法则一:两数相乘,同号得正,异号得负,并把相乘;(“同号得正,异号得负”专指“两数相乘”的情况,如果因数超过两个,就必须运用法则三)

法则二:任何数同0相乘,都得0;

法则三:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数;

法则四:几个数相乘,如果其中有因数为0,则积等于0.

2.倒数

(1)乘积是1的两个数互为倒数,其中一个数叫做另一个数的倒数,用式子表示为a·(a≠0),就是说a和互为倒数,即a是的倒数,是a的倒数。

(2)注意:

①0没有倒数;

②求分数或真分数的倒数,只要把这个分数的分子、分母点颠倒位置即可;求带分数的倒数时,先把带分数化为分数,再把分子、分母颠倒位置;

③正数的倒数是正数,负数的倒数是负数。(求一个数的倒数,不改变这个数的性质);

④倒数等于它本身的数是1或-1,不包括0。

3.有理数的乘法运算律

(1)乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。即ab=ba

(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。即(ab)c=a(bc).

(3)乘法分配律:一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,在把积相加。即a(b+c)=ab+ac

4.有理数的除法法则

(1)除以一个不等0的数,等于乘以这个数的倒数。

(2)两数相除,同号得正,异号得负,并把相除。0除以任何一个不等于0的数,都得0。

5.有理数的乘除混合运算

(1)乘除混合运算往往先将除法化成乘法,然后确定积的符号,求出结果。

(2)有理数的加减乘除混合运算,如无括号指出先做什么运算,则按照‘先乘除,后加减’的顺序进行。

八、有理数的乘方

1.乘方的概念求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。

2.乘方的性质

(1)负数的奇次幂是负数,负数的偶次幂的正数。

(2)正数的任何次幂都是正数,0的任何正整数次幂都是0。

九、有理数的混合运算

做有理数的混合运算时,应注意以下运算顺序:

1、先乘方,再乘除,加减;

2、同级运算,从左到右进行;

3、如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。

十、科学记数法

把一个大于10的数表示成a10n的形式(其中,n是正整数),这种记数法是科学记数法。